1. \[f(x) = \begin{cases} \frac{2kx}{x-1}, & x < -1 \\ x-k, & x \geq -1 \end{cases} \], for what value of \(k \) is \(f(x) \) continuous?

 a. 2
 b. \(-1/2\)
 c. 2
 d. 0

2. Find the derivative of \(f(x) = \frac{x^2 - 4x}{3x + 1} \)

 a. \(f'(x) = \frac{3x^2 + 3x - 4}{(3x + 1)^2} \)
 b. \(f'(x) = \frac{-4}{3x + 1} \)
 c. \(f'(x) = \frac{3x^2 + 2x - 4}{(3x + 1)^2} \)
 d. \(f'(x) = \frac{2x - 4}{3} \)
 e. \(f'(x) = \frac{6x^2 + 9x - 4}{(3x + 1)^2} \)

3. Find the derivative of \(f(x) = 3x^2 \sin x \)

 a. \(f'(x) = 6x^2 \cos x \)
 b. \(f'(x) = 3x^2 \sin x + 6x \cos x \)
 c. \(f'(x) = 6x \sin x + 3x^2 \cos x \)
 d. \(f'(x) = 6x \cos x \)
4. Use implicit differentiation to find $\frac{dy}{dx}$ if $2y - 3x = y^2 + x$.

a. $\frac{2}{1 - y}$
b. $y + 2$
c. -1
d. $2y + x$

5. What is the minimum value of $f(x) = -x^2 + 3x$ on $[0, 4]$?

a. 38
b. 0
c. 3/2
d. 9/4
e. -4

6. Find y' if $y = x^{\cos 3x}$ (hint: use logarithmic differentiation)

a. $(\cos 3x) x^{\cos 3x - 1}$
b. $\cos 3x \ln x$
c. $-3\sin x x^{\cos 3x}$
d. $\left(-3\sin x \ln x + \frac{\cos 3x}{x}\right) x^{\cos 3x}$
e. $-3\sin x \ln x + \frac{\cos 3x}{x}$

7. Find $\lim_{x \to \infty} \frac{x^2}{e^{3x}}$ (Hint: Use L’Hopital’s rule)

a. 0
b. 1
c. 2/3
d. ∞
e. $-\infty$
f. does not exist
8. Which of the following best illustrates the Mean Value Theorem?

9. Label each curve as f, f', or f''.
10. Estimate the area under the graph of \(f(x) = x^2 + 5 \) from \(x = 1 \) to \(x = 7 \) using 3 rectangles and the midpoint rule.

a. 140
b. 100
c. 142
d. 71
e. 154

11. Find \(\int 7 \sin x + 5e^x - 3x^{-1} \, dx \)

a. \(7 \cos x + 5e^x - 3 \ln x + C \)
b. \(-7 \cos x + 5e^x - 3 \ln x + C \)
c. \(-7 \cos x + 5xe^{-x} + 3x^2 + C \)
d. \(7 \cos x + 5e^x + 3x^2 + C \)

12. Evaluate \(\int_1^2 x^4 \, dx \)

a. 31/5
b. 32/5
c. 15
d. 33/5

13. Find \(f''(x) \) if \(f(x) = \int_3^{x^2} 5t \sin t \, dt \)

a. \(10x^4 \sin x^2 \)
b. \(5x^2 \sin x^2 \)
c. \(10x^3 \sin x^2 \)
d. \(5x \sin x \)
14. Use the delta-epsilon definition of the limit to prove that $\lim_{x \to 1} (3x - 1) = 2$. Illustrate with a graph.
15. What is \(\frac{d}{dx} \tan^{-1} x \)? Prove it.
16. Sand is being poured into a sandlot at a rate of 20 ft3/min. It forms a cone whose radius and height are always equal. How fast is the height of the pile increasing when the pile is 5 ft. high?

Ans____________________

17. Someone wants to raise moose for the novelty meat market. This person has a bunch of old telephone poles and plenty of barbed wire for 12,000 feet of fencing. He wants to build a rectangular pen for the moose, using a nearby cliff for one side of the pen (so no fencing is needed for this side). What dimensions should the pen be to maximize its area?

Ans_______________________________
18. Sketch the graph of $y = \frac{2x^2}{x^2 - 1}$, if $y' = \frac{-4x}{(x^2 - 1)^2}$ and $y'' = \frac{12x^2 + 4}{(x^2 - 1)^3}$. Be sure to label any asymptotes, intercepts, relative extrema or inflection points.