Subgroup \((G \text{ a group})\)

If \(H \leq G\) and \(H\) is a group under the operation of \(G\), then \(H\) is a subgroup of \(G\).
e.g. \(\exists e \in \mathbb{Z} \) is always a subgroup of any \(G \) (called the trivial subgroup).

e.g. \(\exists \mathbb{Z}, \mathbb{Z}^3 \) is a subgroup of \(\mathbb{U}(12) \).
Subgroup tests:

I. H is non-empty and
 $a, b \in H \Rightarrow ab^{-1} \in H$

II. H is non-empty and
 $a, b \in H \Rightarrow ab \in H$
 $a \in H \Rightarrow a^{-1} \in H$
III if H is non-empty

and \text{FINITE}

and $a, b \in H \Rightarrow ab \in H$
Some ways to show H is NOT a subgroup—do any one of the following:

A. Show $e \notin H$

B. Find $a \in H$ with $a^{-1} \notin H$

C. Find $a, b \in H$ with $ab \notin H$
Proof of Subgroup Tests:

(i.e. show if H satisfies the conditions of the test, then it is itself a group — i.e. assoc., closed, e, inverses)
I. H "inherits" associativity from G.

is \(e \in H \)?

H is non-empty, so \(\exists x \in H \)

we let \(a = x, b = x, \) so

\(ab^{-1} \in H, \) so \(xx^{-1} = e \in H \)
Inverses? If $x \in H$, is x^{-1} in H?

Yes, let $a=e$, $b=x$, so then $ab^{-1} = ex^{-1} = x^{-1} \in H \checkmark$
Closure? \(x, y \in H \) is \(xy \in H \)?

Let \(a = x \) \(b = y^{-1} \) since we know \(y \in H \Rightarrow y^{-1} \in H \) from previous step.

\[ab^{-1} = x(y^{-1})^{-1} = xy \in H \]

So yes \(H \) is a subgroup.
Test II

We've proven closed inverses are all given.

H is non-empty, so $x \in H$.
$x \in H \Rightarrow x^{-1} \in H$

Let $a = x$, $b = x^{-1}$, so $ab = xx^{-1} = e \in H$.

Test III

H is finite and $a, b \in H \Rightarrow ab \in H$

Assoc. is given, closed is given.

Need to show $x \in H \Rightarrow x^{-1} \in H$

(this will give $e \in H$ as above)
So let X be any element of H. Look at the set

$\exists x, x^2, x^3, \ldots, 3 \leq H$

But H is finite, so there must be $i \neq j$ such that
$x^i = x^j$

Then (operating in G)

$e = x^{j-1} = x \cdot x^{-1}$

i.e.

$x^{-1} = x^{j-i-1} \in \{x^1, x^2, x^3, \ldots \} \subseteq H$

Inverses are in H, and since closed

$x \cdot x^{-1} = e \in H \checkmark$
Notation

for $x \in G$

$\langle x \rangle : = \exists x^n \mid n \in \mathbb{Z}$

X is called a generator of $\langle x \rangle$
eg in \(\mathbb{Z}^+ \)

\[
\langle 4 \rangle = \langle 3, 4, 8, 2, 6, 0 \rangle = \langle 2 \rangle = \langle 6 \rangle = \langle 8 \rangle \\
\langle 5 \rangle = \langle 3, 0, 5 \rangle \\
\langle 7 \rangle = \mathbb{Z}_{10} = \langle 1 \rangle = \langle 3 \rangle = \langle 9 \rangle
\]

(all relatively prime to 10)
Theorem: \(\langle x \rangle \) is always a subgroup of \(G \).

Proof: (Use Test I)

Take \(a, b \in \langle x \rangle \)

So \(a = x^n, b = x^m \) for some \(m, n \in \mathbb{Z} \)
Then \(ab^{-1} = x^n x^{-m} \)

\[= x^{n-m} \in \langle x \rangle \]

since \(n-m \in \mathbb{Z} \).
Def

\[Z(G) = \{ a \in G \mid a x = x a \quad \forall x \in G \} \]

"The Center of G"
Theorem: $Z(G) \leq G$

Proof (Test II)

Let $x, y \in Z(G)$, is $xy \in Z(G)$
\[xg = gx \quad \forall g \in G, \]
\[yg = gy \quad \forall g \in G, \]

Show \((xy)g = g(xy)\) \quad \forall g \in G, \]
\[xyg = xgy = gx'y \]
Now show if $x \in Z(q)$
then $x^{-1} \in Z(q)$.

Know $xg = gx$ show $x^{-1}g = gx^{-1}$

$x^{-1}xg = x^{-1}gx \\
g = x^{-1}g x \\
g = g x^{-1}x^{-1}$

$g x^{-1} = x^{-1}g x^{-1}$

Q.E.D.