Theorem: Let G_i be cyclic for all i. Then

$\bigoplus_{i=1}^{n} G_i$ is cyclic \iff

$\gcd(|G_i|,|G_j|)=1$ whenever $i \neq j$
Proof: “⇒” Suppose $\prod_{i=1}^{n} G_i = G$ is cyclic. Recall that for each divisor d of $|G|$, $E!$ subgroup of order d.

Now B.W.O.C. suppose $i \neq j$ with $\gcd(|G_i|, |G_j|) = s + 1$.
Now, if \(g_i \in G_i \) such that \(\langle g_i \rangle = G_i \) since \(G_i \) is cyclic.

Similarly, if \(g_j \in G_j \) such that \(\langle g_j \rangle = G_j \)

Also, \(|G_i| = s \cdot m \) for some \(m \)
\(|G_j| = s \cdot k \) for some \(k \)
Thus
\[|g_{m}^{i}| = S, \text{ and } |g_{j}^{k}| = S \]

Thus
\[|\langle e_{i}, \ldots, e_{i-1}, g_{m}^{i}, e_{i+1}, \ldots, e_{n} \rangle| = S \text{ in } G \]
and
\[|\langle e_{1}, \ldots, g_{j}^{k}, \ldots, e_{n} \rangle| = S \text{ in } G \]

Thus G has more than one subgroup of orders S \(\Rightarrow \), \(\ldots \) \(\gcd(|g_{i}|, |g_{j}|) = 1 \) for \(i \neq j \)
if \(\gcd(|G_i|, |G_j|) = 1 \) \(\forall i \neq j \),

and \(G_i \) is cyclic \(\forall i \),

let \(g_i \) be a generator of \(G_i \), so

\[|g_i| = |G_i| \]

Recall that \(\gcd(m, n) = 1 \) \(\Rightarrow \text{LCM of } m = mn \)
Thus
\[|(g_1, g_2, \ldots, g_n)| = \text{cm}(|g_1|, |g_2|, \ldots, |g_n|) \]
\[= \text{cm}(|g_1|, |g_2|, \ldots, |g_n|) = \prod_{i=1}^{n} |G_i| = |G| \]
\[\Rightarrow \langle (g_1, \ldots, g_n) \rangle = G \Rightarrow G \text{ is cyclic.} \]
Cor \[Z_m \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_k} \]

\[\iff m = \prod_{i=1}^{k} n_i \quad \text{and} \quad \gcd(n_i, n_j) = 1 \quad \forall i \neq j \]
eg. \(\sqrt{100} \sim 225 \oplus Z_4 \) can't split up

#2 combine

\[
\begin{align*}
Z & \oplus Z_2 \oplus Z_2 \oplus Z_3 \oplus Z_5 \\
& \approx \ \\
& \sim \ \\
& \approx \ \\
& \sim \ \\
& \approx \ \\
& \sim \ \\
Z_2 \oplus Z_6 \oplus Z_15 \sim & Z_6 \oplus Z_{30}
\end{align*}
\]
\[\mathbb{Z}_{10} \oplus \mathbb{Z}_{22} \]

\[\mathbb{Z}_{32.5} \oplus \mathbb{Z}_{11.2} \]

\[\mathbb{Z}_{32} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{11} \oplus \mathbb{Z}_{2} \]