Vector Algebra

Textbook Reference: Chapter 3 – sections 1-6 & Appendix A.

- Definition of a Vector
 - A vector \(\mathbf{v} \) is determined in terms of its magnitude \(v = |\mathbf{v}| \) and its direction \(\hat{\mathbf{v}} = \mathbf{v}/v \).
 - In two-dimensional space, a vector \(\mathbf{v} \) is written as
 \[
 \mathbf{v} = v_x \hat{x} + v_y \hat{y},
 \]
 where \(\hat{x} = (1, 0) \) and \(\hat{y} = (0, 1) \) are unit vectors in the directions of increase of \(x \) and \(y \), respectively, and \((v_x, v_y) \) denotes its components.
 - In terms of its components \((v_x, v_y) \), the magnitude of the vector \(\mathbf{v} \) is
 \[
 v = |\mathbf{v}| = \sqrt{v_x^2 + v_y^2},
 \]
 while its direction is
 \[
 \hat{\mathbf{v}} = \frac{v_x}{\sqrt{v_x^2 + v_y^2}} \hat{x} + \frac{v_y}{\sqrt{v_x^2 + v_y^2}} \hat{y}.
 \]
 Note: The magnitude of a vector is always positive.
 - The direction unit vector \(\hat{\mathbf{v}} \) can also be represented in terms of the direction angle \(\theta \) as
 \[
 \hat{\mathbf{v}} = \cos \theta \hat{x} + \sin \theta \hat{y}.
 \]

- Vector Algebra
 - Multiplication of a Vector \(\mathbf{v} \) by a Scalar \(\alpha \)
 \[
 \alpha \mathbf{v} = (\alpha v_x) \hat{x} + (\alpha v_y) \hat{y} \rightarrow \begin{cases}
 |\alpha \mathbf{v}| = \sqrt{(\alpha v_x)^2 + (\alpha v_y)^2} = |\alpha| |\mathbf{v}| \\
 \alpha \hat{\mathbf{v}} = \left(\alpha/|\alpha|\right) \hat{\mathbf{v}}
 \end{cases}
 \]
 - Vector addition \(\mathbf{w} = \mathbf{u} + \mathbf{v} \)
 \[
 \mathbf{w} = w_x \hat{x} + w_y \hat{y} = (u_x + v_x) \hat{x} + (u_y + v_y) \hat{y}
 \]
Figure 1: Cartesian $\mathbf{v} = v_x \hat{x} + v_y \hat{y}$ and polar $\mathbf{v} = v (\cos \theta \hat{x} + \sin \theta \hat{y})$ vector decompositions.

Figure 2: Vector addition $\mathbf{w} = \mathbf{u} + \mathbf{v}$.
Example: \(\mathbf{u} = u \hat{x} \) and \(\mathbf{v} = v (\cos \varphi \hat{x} + \sin \varphi \hat{y}) \)

\[
w = \sqrt{u^2 + v^2 + 2uv \cos \varphi} \quad \text{and} \quad \tan \theta = \frac{v \sin \varphi}{u + v \cos \varphi}
\]

Note: Direction angle \(\theta \) is defined as follows

\[
\theta = \begin{cases}
\arctan(w_y/w_x) & \text{if } w_x > 0 \\
\pi + \arctan(w_y/w_x) & \text{if } w_x < 0
\end{cases}
\]

Test your knowledge: Problems 4-7 & 12 of Chapter 3