

2

Increasing Student Confidence throughout the Computer Science Curriculum
John A. Trono
Computer Science Department
Saint Michael's College
jtrono@smcvt.edu
Keywords: POP-I.B. barriers to programming, POP-II.B. program comprehension, POP-IV.A concurrency
Abstract

As educators, we all try to do our best to help the students enrolled in our classes learn/understand the concepts, techniques and strategies pertinent to those courses. One effective methodology to aid this pursuit is to devise a semester-long plan of activities that will attempt to increase each student’s level of confidence that they are adequately learning the course’s contents. Experience has shown that students who are confident about their knowledge competency tend to stay more focused and motivated about the subject matter, which tends to improve their retention of this knowledge obtained therein well beyond the course’s duration. The remainder of this report will describe some of the specific, course-related activities that have been used to bolster student confidence in many different computer science courses.
1. Introduction
The basic premise upon which this work is built is something that this author has been incorporating since his first few years as an educator (almost thirty years ago). From those early days as a novice, assistant professor, to the present day evolution of this ‘sage on the stage’, one thing has always been clear to me as I’ve looked at the faces of those attending my course presentations: students who believe that they are understanding the concepts being described are more engaged, active learners while attending course lectures than those whose facial expressions actually remind me of ‘a deer caught in the headlights’.
It is unimaginable that one could meet a teacher, at any level – in any system of education, who can say that they have never seen that look of sheer terror that is concomitant with the realization that what the speaker is trying to convey makes no sense whatsoever to that person who is listening to them. Once that feeling of being lost has been recognized by the listener’s brain, one of two things usually occurs: either a hand is raised, and a question is asked (to rectify the situation), or, that student continues to sit there, only listening passively while taking notes, hopeful that a revelation will occur to them at a later time – perhaps while they are reading passages from the assigned, course textbook.
Unfortunately, many students who realize that they are in a course which appears to them to be beyond their ability to completely comprehend, sadly acquiesce into ‘survival mode’, if it is too late to withdraw from this course. In this mode, the student will work as hard as they can, and they will hope that they will receive at least a passing grade in the course so that they will receive the credits for completing the course, and it will therefore not have been a total waste of their time. How sad is it that some students must rely on this approach at all, especially since becoming a more informed citizen is one important outcome of higher education – not just the semester’s grade point average, or the eventual diploma that may be earned.

Thankfully, many intelligent, motivated students resist this temptation and persevere past such roadblocks. It has become clear to me over the years that all those who do overcome such temporary setbacks typically seem to share one common trait: they all believe in themselves, and are confident in their ability to learn new ideas. For some students, their confidence can be lessened during their time in a course, and if it is, their level of engagement slowly ebbs towards passivity, and their internal push to ask clarifying questions during class decreases until it is non-existent (for that course).

This self-defeating, reinforcing behaviour is usually supported by two faulty student assumptions. First, ”… the teacher will think that I am stupid because I have to ask them questions”; students have said that they believe the teacher will also “… assume that I think that they are a terrible teacher since I can’t follow what they are doing in class.” Secondly, “If I ask a stupid question”, it will allow “… the teacher to become aware how low my IQ is, and I am hoping to hide that fact from them.”
Some students have such strong identities and personalities that it would be difficult for one teacher (in one course) to alter their self-esteem at such a late developmental stage. However, many students are not so strongly aware of their own inherent capabilities, and those are the ones who would benefit the most from the techniques and methodologies suggested in this paper.

Subsequent sections will outline strategies (to increase student confidence) fthat have been integrated into courses on software development, operating systems, computer architecture, and computer networks, and hopefully this report will inspire those who read it to develop more of the same.
2. Introductory Level Programming Courses

Many universities did not have programming courses in the 1960’s, but now that the information revolution has taken hold, such courses are available to many high school students – or even younger individuals, if they wish to learn about how to instruct a computer (to do what they want it to do) either by reading a book on that topic, or by some online, educational experience.

Most college curricula now have incoming students enrol in a basic course that introduces them to problem solving on the computer, implementing their software artefacts in some high level, programming language, e.g. Java, C++ or Python. Some students may test out of this course in some fashion, most popularly in the United States by having successfully scored high enough on an Advanced Placement (AP) test, after having completed an AP course in high school. (Many colleges state-side will give college credit if a student earns a 4 or 5 – out of 5 – on an AP exam.) Most institutions then follow this course with one where data structures and algorithm analysis are the primary topics of interest.
At Saint Michael's College, our computer science (CS) curriculum has three courses in the introductory software development sequence. Our first programming course (CS111) is essentially open to all students, so we enrol quite a variety of students in it, from many different backgrounds and majors, as CS111 also fulfils the quantitative reasoning, graduation component within the College’s, required Liberal Studies Curriculum. The following course, CS113, focuses more on ‘programming in the large’ since the largest program a student will complete in our CS111 course will most likely be between 50 and 100 lines of Java code (not counting comments). Hence, the two primary goals of CS113 are: to expose our students to some of the software engineering techniques that are used by many professionals when they develop software; and to help our students reinforce (and extend) their own problem solving skills as they are designing (and implementing) programs composed of hundreds of lines of code (and possibly many, distinct Java classes/objects).

CS113 also provides the students (who take it) with an opportunity to increase their confidence in the programming skills that they acquired in CS111 since those skills are now going to be reinforced (and enhanced) by the completion of more challenging and intricate programming projects in CS113 (than those that can reasonably be assigned to students taking CS111). This curricular decision has been an important building block that was instituted back when our department was created (1982), and we believe that it has been a very valuable, pedagogically sound choice that has aided many students – especially those who came to our program with no prior programming experience whatsoever.
One technique that I’ve always found to be quite effective with regards to reinforcing student understanding, when I am teaching our CS111 course, is illustrating how the values of the variables change (over time) while a program is executing. Mayer (1981) cites the results from an earlier study of his where students, that were exposed to his “concrete model”, performed better on questions pertaining to basic program understanding that those in the control group. More recently, Msele (2010) has verified that the use of his RAM diagrams have likewise been a valuable methodology for enhancing comprehension (when teaching programming).

Both of these approaches are slightly different manifestations of having students carefully trace a program in a step by step manner. I also demonstrate this technique during my lectures, though I simply list each declared variable in a horizontal fashion, with a ‘?’ underneath each one, to show that its value is currently unassigned. Then, each time a variable is updated during an assignment statement, the value in the corresponding column is modified to indicate that current value (which has been placed into that memory location, for that specific variable).
Because repetition is a very powerful tool for those attempting to master the skills in CS111, my students will trace (and write) programs on weekly quizzes as well as during the three, in class exams given each semester; there are also weekly programming assignments that will help them to internalize the art and science of computer programming. Both skills – tracing and creating software – are fundamentally what CS111 is all about. However, learning how to correctly trace a program is quite an important skill since it allows the students to determine why their program’s output is incorrect, which can help them when creating a program on a quiz or exam, since it provides them a technique to discover any logic errors – and rectify them before the result is assessed.

Another useful tool in these introductory CS courses is the concept of an extended, or multi-phase, assignment. Huggins et al (2003) describe several places where having a project contain several phases, which may be given as consecutive assignments, or can be spread out throughout the semester, can be beneficial. Student confidence seems to build during the time these related assignments are being worked on (whenever I’ve utilized this approach).

More recently, Chen and Hall (2013) have also used the last month of a first programming course to expose their students to a lengthy, cumulative programming project, with several deadlines and milestones spread throughout that time period. A student quote indicates how positive this assignment was for them: “This project was a great learning experience … I now realize that I’m capable of making fairly complex programs … and because of that, I feel confident and excited to program more.” The course instructors also seem to concur with this belief: “We observed an increase in confidence amongst the students as they progressed through the project.”

Textbooks have a great impact on what students learn during their courses, and many books at the introductory level attempt to build their reader’s confidence regarding their internalization of those particular concepts. One popular strategy to accomplish this is to sprinkle review/’self-help’ questions throughout each chapter rather than place them at the end of each chapter. Using the former approach, students can gain immediate feedback and assess their level of understanding while they try to comprehend the material. This self-assessment strategy is facilitated by incorporating the answers to these questions in an easily accessible place so students can validate their newly acquired knowledge, or, they can return to previous sections in the book to uncover what they missed during their initial pass over those ideas. (I’ve noticed recently that some upper level CS textbooks are beginning to do likewise as well.)
This section has included several strategies that may help to augment each student’s learning of the desired, basic programming skills. Because these skills must be retained for subsequent CS courses, it is important that they are not forgotten. The more hands on experiences that each student successfully completes, the more likely it is that these skills will become like ‘second nature’ to those students who complete the course.
To make the more abstract concepts of advanced, upper level CS courses as crystal clear as possible, to all the students enrolled in those classes, it is also important to provide many hands on exercises and projects to bolster their understanding as well. The following three sections will enumerate what approaches seem to have benefited my students the most over the years (in this regard).
3. Understanding the Mechanisms inside an Operating System
Mayer (1981) stated “… understanding is defined as the ability to use learned information in problem-solving tasks that are different from what was explicitly taught … ability to transfer learning to new situations.” This is a point that I stress at the first meeting of a required junior/senior level course that focusses on operating systems (O/S) concepts. As an example, I show them how to add two three digit numbers, illustrating the process of propagating the carries, e.g. 468 + 795. I then proceed to say that I now expect that they could add two seven digit numbers in the same manner, if they truly understand the process, even though I have not ever explicitly demonstrated a specific example of that size.
As advanced, upper level undergraduates, these students need to be prepared to become lifelong learners, and to be more independent in advanced courses like this one since they will be expected to continue to develop professionally, on their own, after graduation. That is why I tell them that they can’t rely only on memorization, for the same reason that that strategy doesn’t work when trying to learn how to program; one must understand what each statements does, and how to select the right ones – in the correct order – to solve the problem at hand. Remembering the exact statements in one program may be useless when solving an entirely different problem.
To emphasize this point, there must be less hand holding in courses like this one, than in CS111: typically, upper level students are provided one opportunity to demonstrate proficiency on a topic, unlike in CS111, where quiz questions are a preparatory step for similar questions on upcoming exams, and these exams are weighted more heavily, since students should be rewarded if they’ve finally learned the material even if initially they were ‘not quite getting it’. (This approach seems reasonable because the student mix in CS111 is also more heterogeneous than in an advanced course like one investigating O/S concepts.)

Homework assignments, quizzes and programming projects are all certainly quite helpful tools as students attempt to understand the O/S topics presented, but besides exercises on short term scheduling strategies, local page replacement algorithms and deadlock avoidance techniques, for example, several other useful instructional aids will now be described.
Concurrency, the concept of more than one program being necessary (to efficiently solve a problem), has always been an important topic that ties together many of the underlying O/S concepts (after those concepts have been described earlier in the course). To help students gain confidence in this area, one that is quite different from the straightforward, sequential programming that they’ve been exposed to up to this point in time, I provide them with many homework problems to solve, all of which require them to construct process pairs (via paper design) that utilize semaphore operations to control their independent (and possibly parallel) execution.

These homework problems are assigned in such a way that one is due at the beginning of every class for roughly six lectures. Students are also informed that the first few of these assignments will be graded more leniently than the ones that follow, since concurrent programming is probably new to them. Problems that are handed out in one class period aren’t due the next period (when they can ask for clarification on the problem), but their solution must be turned in during the class after that one.

Students are told that for each such homework, one submission will be selected randomly, and it will be copied onto the board for inspection. (Students will only have at most one of their submissions publically displayed in this manner.) My experience is that students certainly learn from how a correct solution solves the posed, concurrent programming problem, but they learn more from recognizing what does not work in someone else’s proposed solution. Using this approach, many students can also learn what to avoid by seeing such demonstrative examples. Students will also be asked to solve a similar problem on a quiz (and on the final exam), and one of these exercises will be chosen for direct implementation, using the semaphore primitives that are available on our Linux-based workstations (in our upper level, computer lab).

One final piece of the ‘concurrency learning experience’ is to have the students be exposed to other related topics. One strategy that I’ve found to be beneficial is to discuss how general counting semaphores can be implemented using the binary semaphore primitives if they are available on the underlying hardware, and the problems in one such implementation have been documented. I have distributed the relevant articles that have described the problem, and the debate that followed, and then require the students to determine which of the arguing authors view is most correct, and why, and to place their views on this debate in a paper of their own creation. (A brief introduction to the problem, and the articles that compose this debate, can be found in Trono and Taylor (2000).)
4. Computer Architecture: Enhancing Understanding through Performance Analysis

Our CS majors typically enrol in our required computer architecture course in the semester following the O/S course, which is also roughly one year after our students complete our machine organization course. Back in the 1980’s, there were truly no outstanding computer architecture textbooks, but when the first edition of the popular Hennessy and Patterson book (Computer Architecture: A Quantitative Approach) was released in 1990, I adopted it, and have used it ever since. Even though many topics that I consider essential to what I emphasize in this course have been moved into the book’s appendices, I believe it is still the top text for exposing CS students to the level of detail necessary to understand how a processor executes the program’s instructions, and what techniques are used to reduce the time it takes for the programs to complete.
Though this book includes many pertinent exercises at the end of each chapter, I’ve created my own extended assignment that illustrates how much time is saved by the architectural changes that have been incorporated into microprocessors over the years. More specifics about this collection can be found in Trono (1999), but the basic outline is as follows. A typical program in the SPEC (Standard Performance Evaluation Corporation) benchmark suite was chosen, written as a C program, and then translated into a reasonably well optimized, MIPS assembly language (where MIPS is the instruction set architecture described in Appendix C of the 5th edition of Hennessey and Patterson’s book).
The first assignment is to familiarize the students with the C program, one that they will continue to analyse throughout the semester, and to simply calculate the total number of machine cycles it will take to execute this iterative code stub (64K iterations, i.e. 65,536 executions of the code within that loop) with two underlying, instruction execution models. This basic architecture is then improved upon in the next assignment, using the same MIPS code, by first adding a two stage pipeline, and then adding a finite, instruction look-ahead buffer, and the performance improvements can then be quantified using the relevant formulas from the book’s opening chapter.
Next, the inclusion of a data cache, and then an additional instruction cache, reduce the memory bottleneck’s impact on the program’s performance. Finally, the C code is once again translated to MIPS, this time utilizing the available vector instructions present, and only 1024 iterations are needed since each iteration now processes data vectors of 64 elements at a time. The CPI (average number of cycles per instruction) is measured for the architecture in each of these assignment extensions, and the resultant speedup values can be computed, for comparison purposes, after each hardware improvement is introduced. Students do become more confident as this assignment unfolds during the semester, and their performance on these homework problems improve over time even though each subsequent problem is more complex than its predecessor.
Several other possible hardware improvements could be used for subsequent assignments after caches are added, like including a scoreboard, or reservation stations, to facilitate an out of order execution strategy that could extract more instruction level parallelism from this program. However, since the students are also performing research on a topic from a paper chosen from a recent International Symposium on Computer Architecture (ISCA) at that time, I have chosen not to overload them with more homework assignments in the last quarter of the semester when they are feverishly working on their paper, which they could only begin in earnest after the midterm exam. (Their topic was selected early in the semester, so they could collect the relevant references during the first half of this course. This assignment comprises 20% of their overall grade, and must be submitted in written form.)
5. Computer Networks: Packet Flow Activities

The primary objectives I have, when teaching this particular course, is for the students to come away with a deeper understanding concerning how packets travel over the Internet, especially during the transmission of large music or picture files, as well as how basic mechanisms within the protocol stack actually work. Following one idea that permeates this paper – that repetition is one major key to learning, and retaining, how to do something, especially because reinforcing the steps needed to accomplish a task helps to cement those steps in one’s mind – the principle that ‘if you don’t use it, you lose it’ is one that seems to be worth keeping at the forefront of one’s plan for the semester, when establishing a timeline for what should occur during the limited amount of time allotted to enlighten the enrolled students about the topics to be covered.
Error detection (and correction) is an important concept to convey, and cyclic redundancy check (CRC) codes, as implemented in the data link layer, are probably the primary methodology to accomplish this task in many popular protocols. CRC codes also can be efficiently implemented in hardware, using shift registers, and exclusive-or operations, so this topic combines and revisits ideas presented in the machine organization course that students have recently completed. CRC codes also lend themselves to repetition in homework, quiz and exam questions, for reinforcement purposes, and they allow for the investigation of one way to create an error-free conduit for packets/frames to travel.
How packets are routed (between the original and final destination nodes) is another area where each student’s confidence (of the knowledge they are acquiring) can be increased through opportunities that reinforce what they have learned via assessment tools like homework, quiz and exam questions. Several different, distance vector problems are assigned as homework, and once these algorithms have been mastered, the next idea to investigate is how congestion control in the Internet is accomplished. (Congestion occurs if too many packets are attempting to be sent, and the available bandwidth is not high enough to prevent packets from being dropped, due to insufficient space to buffer the excess packets that are queued up for transmission to the next node – in their journey to the final destination specified.)
Many examples of how TCP Tahoe works are presented in class, and as homework/quiz problems, and then other implementations like TCP Reno, and/or other more recent modifications to this basic strategy can be covered, like Selective Acknowledgements (SACK), allowing students to get a better sense of what is going on behind the scenes.
6. Conclusion

While no strategy will work perfectly with every student, my experience has been that the in class strategies, and individual assignments, described here have been reasonably successful in helping students recognize that they have acquired the basic understanding of the related, specific topics (in their respective computer science courses). Ensuring that each student’s confidence in their ability (at a high level) seems to help them remain engaged learners in the classroom. This in turn, I believe, helps them to stay focussed and alert during class meetings and eventually gives them the best chance to successfully complete the course – and to maximize their understanding of the concepts and techniques presented.
7. References
Chen, W.K., and Hall, B.R. (2013) Applying software engineering in CS1. Proceedings of the 18th Innovation and Technology in Computer Science Education conference.

Huggins, J., Kumar, A., Kussmaul, C. and Trono, J. (2003) Multi-phase homework assignments in CS1 and CS2. The Journal of Computing in Small Colleges, 19(2), 182-184.

Mayer, R.E. (1981) The psychology of how novices learn computer programming. ACM Computing Surveys, 13(1) 121-141.

Msele, L.J. (2010) Enhancing comprehension by using Random Access Memory (RAM) diagrams in teaching programming; class experiment. Proceedings of the 22nd Annual Psychology of Programming Interest Group workshop.

Trono, J.A. (1999) A quantitative examination of computer architecture evolution. The Journal of Computing in Small Colleges, 14(4), 190-201.
Trono, J.A., and Taylor, W. E. (2000) Further comments on “A correct and unrestrictive implementation of general semaphores”. Operating Systems Review, 34(3), 5-10.
PPIG-WIP, Keele University, 2013

www.ppig.org

PPIG-WIP, Keele University, 2013

www.ppig.org

