An Undergraduate Project to Compute

Minimal Perfect Hashing FunctionsPRIVATE

John A. Trono

Department of Computer Science

Saint. Michael's College

One Winooski Park

Colchester, Vt. 05439

Abstract
Some heuristics for computing the character weights in a Cichelli-style, minimal perfect hashing function are given. These ideas should perform best when applied to relatively small, static sets of character strings and they can be used as the foundation for a large programming assignment. An example using the names of the fifty United States is given to illustrate how the weights are determined.

Introduction
Many application programs perform searching as part of their normal operations. The fastest known search technique is hashing. Hashing is O(1), i.e. performed in constant time on average, when using the following: a suitable hashing function for the prospective key values; a satisfactory method for collision resolution; and an adequately sized hash table. If one knows a priori the key values to be searched for and therefore can construct a hashing function without collisions, collision resolution is unnecessary. Such a function is called a perfect hashing function. If there are N different key values and the hash function uniquely maps the keys to N consecutive integers, it is called a minimal perfect hashing function(MPHF).

Cichelli[2] presents a MPHF for a set of PASCAL reserved words. This function has the following format:

hash(key) -> weights[first char in key] + weights[last char in key] + length(key)

where the weights array was computed so that 2 <= hash(key) <= 37, given the selected characters for the thirty six PASCAL reserved words. Some researchers have improved upon the method to compute these weights[1,6,7,8], while others have invented different MPHF formats[4,5].

As powerful as these new techniques are, the typical undergraduate does not possess the prerequisite mathematical tools to grasp the computation of the weights - yet MPHFs are something which can be grasped and understood by them as a powerful, time saving, search technique. The remaining sections in this article will describe some heuristics which should assist greatly in quickly determining the weights array using relatively simple operations. Those sections will also use the names of the fifty United States as an example to illustrate the described techniques. These techniques were discovered while manually determining the weight assignments. The following explanation is concerned with the manual steps taken; any implementation should simulate these ideas but will most likely compute different weights than those given here. The penultimate section contains some results from my current implementation.

Position Selection Feasibility and Some Simple Heuristics
When using the Cichelli hash function format, two characters are selected from specific positions in the key and used as subscripts into the weights array. (These two characters will now be referred to as the first and second characters.) A pair of positions is feasible if and only if they do not contain any guaranteed collisions. If any two keys have the same length, and the two characters chosen from one key form the same set as the two characters from the other key, a collision is guaranteed and a MPHF can not be generated; different positions in the keys must be chosen for the first and second characters. For instance, when choosing the first and last characters, ALABAMA and ARIZONA will always hash to the same location; choosing the first and second to the last characters will yield synonyms in ALASKA and KANSAS, etc. Without allowing any character selection wraparound, there are only four choices for the first and second character positions (due to the four letter states - UTAH, OHIO and IOWA): the beginning four and ending four characters, yielding sixteen different combinations. Inspection shows that there are only two feasible combinations out of the sixteen without any guaranteed collisions: selecting the first character, and the third to the last character; and selecting the third character, and the next to the last character. The first pair of feasible positions listed will be used throughout this article.

Once a feasible pair of positions is selected, frequency counts for the characters chosen are computed (and are listed in Appendix 1). Characters which are not selected are irrelevant and can be assigned a weight of zero. Those that appear only once are "wildcards" because each one only affects one key's hash value. Therefore, that key can be mapped to any open hash table entry and those wildcard characters can be assigned as the last step of the MPHF computation to fill in the unassigned entries in both the weights array and the hash table. (The MPHF used here has one difference from the Cichelli format - a mod operation with the hash table size is done as the last step in the hash function to allow hash table wraparound, which is normal in most hash functions. This also increases the number of choices when determining the weight assignments.)

The characters which appear twice are grouped together and will be considered just before assigning wildcards in a manner to be described shortly. All other characters are clustered into three groups containing frequency counts which are relatively close: the ones occurring most - {A,I,O,N}, the middle group - {M,S}, and the ones occurring least - {C,G,T,W}. These groups will be processed in this order: the most common group of characters to the least common group, followed by the group of characters occurring twice (referred to as pairs from now on) and finally the wildcard group. (Clustering itself is an interesting application[3], and different algorithms could yield different groupings, resulting in different weight assignments. For a relatively small set of static keys, three clusters work well with these heuristics.) The main idea when processing the first group is to try and spread out the keys as much as possible by choosing "widely differing" weights for these common characters. With a hash table size of fifty, and four characters in the most common group, it seemed reasonable to attempt to space out the weights by ten, assigning zero to A, ten to N, twenty to O and thirty to I. This initial assignment however contained some collisions, so a plus or minus one adjustment to the assigned weights was attempted, finishing with N's weight at nine and I's weight at twenty one.

Once that was completed, the next group with only M and S was to be assigned. The processing was essentially identical to the previous group except that the spacing chosen was half of the previous group. Again S started at zero and M was assigned five but migrated to four to avoid collisions. (This "halving of spacing" works well assuming that most of the keys will include at least one of the common characters. Given this assumption, the remaining character is used to separate those keys with the same common character, and to lessen collisions between keys with different common characters.) The final group of characters is handled in a similar fashion.

Besides checking for collisions which would result when a specific weight (for the character being processed) is assigned, any implementation must also check for "guaranteed" collisions. Consider the following keys where the letters N and A have already been assigned and K has not:

N..K K...........A

If the assigned weight plus the length of the key is the same total for both keys, a collision is guaranteed to occur when the other character weight is assigned. (If weight[N] is nine and weight[A] is zero, both now have a partial hash function value of thirteen (9+4 and 0+13) and both will have weight[K] added to them yielding a collision.)

Now that weights have been assigned to all characters that appear more than twice in the selected key positions, the last, most involved, step is to assign weights for those characters that only appeared twice. Once this is done, the wildcards will be assigned and the MPHF will be defined for all of the keys.

Handling Pairs
I will now describe how this operation was performed given the weights computed so far, and hopefully how it would proceed for the majority of key sets deemed needy of a MPHF. Several possible drawbacks will follow this discussion.

The five letters H, P, K, U and V each appeared twice, and for this example, in every key where each appeared, the other character had already been assigned a weight. The partial hash function value (that assigned weight plus the key's length) for both keys imposes a constraint upon valid hash table entry choices, which thereby provides a criterion for selecting the only valid choices possible for the weight of the characters which appear twice. Appendix 2 lists all possible valid weight assignments for those five paired letters. The first line states that the difference between the partial hash values for the two keys with a selected character of K is 34. The sets of integer pairs that follow are the only pairs of open entries in the hash table whose indices differ by 34 modulo the hash table size. (A special case is when the paired character is both the first and second character in the same key and must be handled a little differently.)

Once this task is completed, a valid assignment must now be methodically searched for. This is just selecting an entry for each character where the intersection of each pair of entries is empty. If no such assignment exists, one must backtrack and attempt the next possible weight assignment for the last character in the last group processed. Another way for this operation to fail is if any paired character is void of any viable choices for a table entry, implying no weight assignment is currently possible with the other weights as assigned. (In my implementation, backtracking may also occur during the processing of the three clusters if the current weights do not allow the next character's weight to be assigned.)

Several possible situations can arise which complicate the "pairing" operation, and any implementation must be designed to take these into consideration. If the other letter in the key with the paired character has not already been assigned a weight, then it must be due to one of two reasons: this other letter is a wildcard, or both letters for this key are paired characters! These special cases must be dealt because they do appear in other key sets; backtracking should handle the latter case of combined pairs while a modified wildcard operation will handle the former case.

Preliminary Results
To investigate how well these heuristics work, I tested my implementation of them and kept track of the number of times a weight was assigned (without guarenteed collisions) and changed during backtracking. Another simple quantitative measurement of the program's efficiency was the number of times the handling of pairs was performed. (This is only done more than once when what is left can not be assigned.) For five small sets of keys - the three letter abbreviations for the twelve months of the year, twenty eight National Football League(NFL) teams' cities and three letter NFL abbreviations, the thirty six PASCAL reserved words used by Cichelli, and the thirty nine predefined PASCAL identifies listed in [2] - there was no backtracking and the pair function was only called once. Each of these were solved and output in 0.07 seconds using an IBM RS6000 workstation(model 320). The example with the names of the fifty United States took only 0.12 seconds with no backtracking and the set of thirty one most frequently used words[2] took 0.16 seconds, with backtracking occurring fifteen times and the pairs calculation being done thrice. Using all the faculty at St. Michael's College whose last name began with 'A', 'B' or 'C', plus sixteen of my propinquitous colleagues here, 152 backtracking operations took 2.13 seconds. (No letter appeared only twice in this set of sixty keys!) The largest data set used so far is a set of seventy eight division I-A NCAA football institutions, which took seven minutes where pair calculation was performed nine times and backtracking took place 24,582 times.

Conclusion
I propose to use the implementation of a program to compute the weights array for a minimal perfect hashing function, utilizing the heuristics contained herein, as a semester long project for students in an upcoming Junior/Senior level Computer Science course. It has been an interesting experience to compute these weights manually, in search of insight for useful heuristics. I believe the students will appreciate the heuristics (and the program that incorporates them) a lot more if several weeks are given to let them attempt to calculate the weights manually. Appendix 3 contains the weights that I derived manually for the fifty United States, and the ones computed by my implementation.

The choices for data structures, clustering algorithm, and backtracking methodology, along with the "special cases", like the double character example and the management of the cases mentioned when handling the pairs' weight assignments, should give each student enough freedom to distinguish their program from the others in class. (The question as to if a MPHF exists or not, if there is a feasible set of character positions for a given set of keys, is an open question as far as I know. References or E-mail would be greatly appreciated if anyone knows of other small data sets on which to test this implementation.)

References
[1]Chang, C. C. The study of an ordered minimal perfect hashing scheme. Communications of the ACM 27, 1984, 384-387.

[2]Cichelli, R. J. Minimal perfect hashing functions made simple. Communcications of the ACM, 23, 1980, 17-19.

[3]Everitt, B. Cluster Analysis. Halsted Press, 1980.

[4]Fox, E. A., Chen, Q., Heath, L. and Datta, S. A more cost-effective algorithm for finding perfect hash functions. Technical report TR 88-30, Department of Computer Science, Virginia Polytechnical Institute and State University, Sept, 1988.

[5]Fox, E. A., Heath, L. and Chen, Q. An O(nlogn) algorithm for finding minimal perfect hashing functions. Technical report TR 89-10, Department of Computer Science, Virginia Polytechnical Institute and State University, 1989.

[6]Jaeschke, G. and Osterburg, G. On Cichelli's minimal perfect hash function method. Communications of the ACM, 23, 1980, 728-729.

[7]Jaeschke, G. Reciprocal Hashing: A Method for Generating Minimal Perfect Hashing Functions. Communications of the ACM, 24, 1981, 829-833.

[8]Sager, T. A polynomial time generator for minimal perfect hashing functions. Communications of the ACM, 24, 1981, 523-532.

Appendix 1

Letter Count Cluster

A 15 3

O 12 3

N 12 3

I 11 3

S 9 2

M 8 2

T 5 1

C 5 1

G 4 1

W 4 1

V 2 -

H 2 -

U 2 -

P 2 -

K 2 -

D 1 -

L 1 -

R 1 -

X 1 -

F 1 -

Appendix 2
Letter - difference - {valid pairs}

K - 34 - {13,47}, {14,48}, {20,4}, {36,20}, {48,32}

H - 19 - {4,23}, {10,29}, {13,32}, {22,41}, {29,48}, {41,10}

P - 6 - {4,10}, {14,20}, {21,27}, {23,29}, {41,47}, {48,4}

U - 1 - {13,14},{20,21},{21,22},{22,23}

V - 11 - {10,21},{21,32}

Appendix 3

Non-zero Character Weights(Manual)

 C D F G H I K L M

32 6 11 18 7 30 14 18 4

 N O P R T U V W X

 9 21 26 24 7 11 43 9 17

Non-zero Character Weights(Program)

 C D F G H I K L M

42 32 17 20 12 36 45 25 8

 N O P R S U V W X

24 12 6 10 3 35 35 21 8

