Comments on "Tagged Semaphores"

John A. Trono

Computer Science Department

Saint Michael's College

Colchester, VT 05439

jtrono@smcvt.edu

Abstract

Modifications are made to a proposed solution for a specialized synchronization problem. These changes remove inconsistent semaphore usage and preclude the possibility of deadlock that is present in the proposed solution.

Introduction

Bu proposed the construct of a tagged semaphore to design a simpler solution for a particular type of synchronization problem [1]. However, the first solution listed, whose purpose is to illustrate the inappropriateness of any solution using only traditional semaphore operations, contains a major flaw - one that is not addressed by the author. The correction of this flaw is straightforward, whereas a different observation leads to an approach that does not violate prescribed semaphore usage.

Statement of the Synchronization Problem

A generic definition of this problem could be described as follows. A set of N resources can be shared amongst K groups of resource users. Each group contains only the same type of resource users, and each group’s users are of a different type than the other groups. All groups can be different sizes, and if any resource is allocated to any particular type of user, then the other resources can only be allocated to users of that same type. Users that are of a different type will have to wait until all the resources are free, but at that point, some user who is waiting will be granted access to a resource, as will any previously blocked resource user of this newest user's type. Therefore, once the resources all become free, they are allocated until either everyone in one of the groups who have been waiting acquires a resource, or all the resources are allocated. (This description is reminiscent of one variation of the readers and writers problem, i.e. where readers have priority over writers. Once a writer finishes an update and unlocks the shared resource, all other waiting readers may be allowed access once the first reader is granted access [2].) Several specific examples of this type of problem include the following:

· A room with a finite set of bathroom stalls, where only members of the same gender can be in the room at any instant.

· Renting an athletic facility that has a maximum participant capacity, e.g. a tennis, squash, or basketball court, to a particular group.

· The allocation of a finite set of dining tables in a restaurant, or hotel, where each group reserves a table with at least a certain number of seats, so that some portion of the group can hold a discussion over a meal. (In this particular case, the N seats at one table are one set of N resources.)

First Solution

Bu proposed the solution in figure 1 and identified the following limitation contained therein. Users that are denied access to a resource because of their particular user type must be placed into a queue (this is referred to as the resource queue in this paper) that is distinct from one that processes would be placed on if they became blocked on a semaphore. This is necessary because the operation of waiting on a traditional semaphore (Bu uses P(S) with boolean semaphores and Wait(S) with counting semaphores [1]) does not satisfy the constraints of this problem; the order that users are removed from the associated resource queue is frequently determined by the type of user, and not by its arrival time, as in most semaphore implementations. The value of the counting semaphore Sem holds the number of currently available resources, and it is explicitly updated to maintain the correct state, thereby violating the intended abstraction provided by a semaphore [2]. (The statement “Sem := Sem – 1;” appears three times in the code to release a resource in figure 3. Wait(Sem) could be substituted for that statement without changing the behavior of the code because Sem is greater than zero when said statement is executed. Even if those changes were made, the explicit examination of Sem’s value, in the two boolean expressions contained in each code segment, violates the abstraction.)

P(Lock); -- this is a comment

if Sem = N then

Wait(Sem); -- anyone can enter

Tag := type of the one who entered; -- one Tag,Sem,Lock per resource set

elsif (Sem > 0) and (Tag = type of the one who wants to enter) then

Wait(Sem); -- only those who are the same resource user type can enter

else

Those who want to enter will wait(suspend) on that resource queue

end if;

V(Lock);

Figure 1 - The code fragment to acquire a resource. (Updated to reflect the generic problem as defined above, not the specific one as given in [1].)

The “resource queue” also violates the typical implementation of a queue because elements are removed from a position other than the front of the queue. An ordered list would more correctly identify the data structure as it is used here, where insertions are always done at the end of the list, and elements may be removed from the front of the list, or by initiating a search that starts at the front until a specific user type value is found.

The major flaw mentioned previously occurs because the boolean semaphore Lock is used to guarantee that only one process is active in the code listed in figure 1. (The code for releasing a resource uses the same initially true Lock semaphore in exactly the same manner; the P(Lock) and V(Lock) operations surround all of those statements too.) As it is listed above, if a process is executing this code, and it decides that it must wait for a resource because it is not the same type of user as those currently allocated a resource, it does so in the last else. However, that process suspends itself, and does not signal Lock. This prevents any other processes from completing either a request for, or a release of, that particular type of resource; those processes become blocked when they execute P(Lock), leading to deadlock. What specific information is placed in the resource queue, and how one process wakes up another one when it is removed from the resource queue, is omitted in [1], but reasonable assumptions can be made about these logistical details.

Modifications to Bu's Solution

One can observe that in both places where the Wait(Sem) operation occurs in figure 1, Sem is greater than zero, so the process executing said operation will not block. Therefore, the original Signal(Sem) operation in the code fragment to release a resource would have no effect but to increment Sem. Also, because the only action being performed by the Wait and Signal operations is the modification of Sem’s value, it appears that Sem should be declared as a shared integer variable instead. Given this change, Sem must only be examined and updated in a mutually exclusive manner by the processes that are trying to request and release resources. Figure 2 is a modified solution to the problem, with a semaphore - Mutex - to limit access to the share variable Sem. As illustrated below, the aforementioned flaw can be removed by simply moving V(Mutex) to the end of each conditional code fragment, guaranteeing its execution.

P(Mutex);

if Sem = N then

Sem := Sem - 1;

Tag := type of the one who entered;

V(Mutex);

elsif (Sem > 0) and (Tag = type of the one who wants to enter) then

Sem := Sem - 1;

V(Mutex);

else

Those who want to enter will place info about themselves on the resource queue

V(Mutex);

suspend this process;

end if;

Figure 2 - Improved resource request code fragment.

Likewise, this code rearrangement would remove the flaw in Bu's first solution. The boolean semaphore Mutex also guarantees that only one process is attempting to update the state of the resource queue. Such processes will explicitly suspend themselves after they have signaled Mutex.

The code fragment to release a resource that appears in figure 3 is almost exactly as Bu presented it. Mutex has been substituted for Lock, and more explicit information about how suspended processes are awakened has been added. The P(Mutex)/V(Mutex) pair continues to act as the protection mechanism so that the code there is treated as a critical section, and only one process can be accessing Sem, or the resource queue, at a time. The code fragments in figures 2 and 3 would be sufficient to satisfy the constraints of the generic problem previously described, and now if one were not satisfied with this solution, then perhaps the approach presented by Bu, using the tagged semaphore construct, should be considered.

P(Mutex); -- was called Lock in the original

Sem := Sem + 1; -- was Signal (Sem)

if (resource queue is not empty) then

if Sem = N then

Choose one from the resource queue for entering -- assume the front?

Sem := Sem - 1;

make a call to wake up the process just removed

Tag := user type of the awakened process’ group;

while (Sem > 0) and (the resource queue has entries of this user type) loop

remove such an entry

Sem := Sem - 1;

make a call to wake up the process for the removed entry;

end loop;

elsif (an entry in the queue is of the same user type as Tag) then -- Sem is 1.

remove that entry

Sem := Sem - 1;

make a call to wake up the process contained in the removed entry;

end if;

end if;

V(Mutex);

Figure 3 - Code fragment to release a resource.

Conclusion

A proposal to remove a subtle flaw, contained in a previously published solution to a less widely discussed synchronization problem, has been given. A small modification, to change the type of the variable Sem from a semaphore to a shared integer, yields a possibly more accurate representation for a solution to fit the problem. Even so, Bu’s modified approach [1], using tagged semaphores, may still be considered an improvement to the solution listed here for this problem.

References

[1] Bu, X. Tagged Semaphores. Operating Systems Review, volume 34, number 3, (July 2000), pp 11-15.

[2] Stallings, W. Operating Systems: Internals and Design Principles. Prentice Hall, third edition (1998).

