A Comparison of Three Strategies for Computing PRIVATE

Letter Oriented, Minimal Perfect Hashing Functions

John A. Trono

Saint Michael's College

One Winooski Park

Colchester, VT 05439

Abstract

This paper will discuss improvements to Cichelli's method for computing the set of weights used for minimal perfect hashing functions[1]. The major modifications investigated here pertain to adding a "MOD number_of_keys" operation to the hashing function, and to the removal of unnecessary backtracking due to "guaranteed collisions".

Introduction

Since the paper "Minimal Perfect Hashing Functions Made Simple" by Cichelli in 1980[1], there have been many articles written on this topic. A minimal perfect hashing function (MPHF) is one that is created to work with a predetermined static set of keys so that there are no collisions and the number of entries in the hash table is the same as the number of keys to be stored there.

Most of the articles about MPHFs have fallen into one of two categories: those that are working with numeric values computed from the keys, and those that are working with certain alphanumeric characters within the keys (referred to as "letter oriented" - excellent summaries of most of this research can be found in [3,4,7].) This paper is only concerned with the letter oriented approach and examines the efficiency of calculating the weights array so that the following hash function - h - is a MPHF. (For the rest of this paper, the term "weights" means the array of weights.)

h(key) = weights[key's 1st char] + weights[key's last char] + len(key)

Three strategies to determine values for the weights will now be briefly described.

The First Strategy

Cichelli initially used a "pure backtracking" approach to assign the weights, and then modified this so that the letters to be assigned earliest are those that are very popular within this set of keys in the first and last positions. Therefore, each key's position in the ordered list of keys is determined by the sum of the occurrences of its first and last letter over the entire set of keys. After the keys are sorted in this manner, weights for letters in the key with the largest sum would be assigned first, then the second largest, and so on. To improve the efficiency of this search for an appropriate set of weights (given the constraint that no two keys can map to the same position in the hash table), keys which had a smaller sum but whose letters' weights would both already have been assigned by the time that key was "next in line", were promoted in this sorted list to the earliest point where the key's place in the hash table is "known". This prevents wasted backtracking when a key further down in the list would collide with another key already placed in the table.

Now concerning the backtracking, the value assigned to each letter (and stored in the weights array) is allowed to range from 0 to MAX, where MAX is an input to the entire process. Obviously the larger MAX is, the more freedom the program would have in computing the weights; but since each letter assignment loop iterates from 0 to MAX, the larger MAX is, the longer it takes to determine the weights. This growth in execution time (and tries[6], which is equal to the number of times a position in the hash table is examined for possible placement) is exponential. Table 1 illustrates attempts to create a MPHF for the 36 reserved words in PASCAL, using different values for MAX. For MAX values of 1 to 14, there is no possible assignment to the weights to create this MPHF. Choosing MAX equal to 15, a solution is found quite quickly, as shown in Table 2.

The main problem involves choosing a value to use for MAX: a small value may not yield an answer and a large value may take a long time to determine one! To avoid this choice, and to give the backtracking implementation more flexibility when assigning weights, modify h to allow "hash table wrap around" by using the MOD operator as follows:

h(key) = (formula used earlier) MOD number_of_keys

Now MAX can be assigned as number_of_keys - 1 (which is 35 in the PASCAL example). This modification yields a tremendous improvement: it took only 0.09 seconds to compute and 2469 "tries" working with this set of PASCAL reserved words. To give the original approach a fair chance, it has been suggested that one use the number of unique letters that appear in the first or last position as MAX. There are 21 such letters in this set of 36 PASCAL reserved words; after 1.86 seconds and 181,069 "tries", a solution is found. TABLE 2 lists the results obtained from trying MAX in the range 15-35 without the MOD operator, for those that consumed less than one hour of CPU time. The fact that choosing a relatively large MAX value may take an unacceptably long time makes determining the value for MAX a subgoal of the entire process! At this point one can observe that since the desired objective is the weights, one should not have to search for a value of MAX but rather just use the formula with the MOD above. (The Appendix lists 14 small, static sets of words and the results of applying all three strategies to them.)

TABLE 1 (No Solution Found)

 MAX 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tries 11 25 71 196 599 2084 3611 11K 29K 73K 206K 890K 6.3M 55.3M

 Time 0.06 .06 .06 .07 .07 0.08 0.08 0.11 0.21 0.43 1.0 3.7 22.3 190.1

(Time is in seconds, K=1000 and M=1000000 for all tables and the Appendix.)

TABLE 2

MAX 15 16 17 18 19 20 21

Tries 2.4M 2.6M 0.5M 1.8M 6.4M 3.8M 181K

Time 7.7 8.9 2.1 6.2 26.5 22.9 1.9

The Clustering Approach of Trono

After explaining the ideas in Cichelli's paper to many students over the years, I finally attempted to determine the weights by hand for a small set of 28 keys (data set #3 as listed in the Appendix). Filling all of the hash table entries uniquely became more difficult as I neared the end of the list of keys, so I developed a new approach for solving this problem. The first improvement was to add the MOD operation, as previously mentioned. After quickly succeeding, I then decided to attempt a tougher problem - finding the weights to be used with the names of the fifty states in America (data set #11). Performing these calculations by hand led me to the following heuristics:

- Find a feasible pair of letters to work with since the first and last letter may not always be unique.

- Count the number of occurrences for the two letters selected above across all keys.

- Those with a count of one are to be assigned last, to fill in the final few empty slots. (These letters are referred to as "wildcards" since they can be assigned any value and only affect one key.)

- Cluster the rest of the letters appearing into four groups:

1)Those with a high frequency of repetition.

2)Those with a medium frequency of repetition.

3)Those with a small frequency of repetition.

4)Those that only appear twice (I call these pairs).

For the fifty states, there are only two feasible choices for the first and second letters chosen. All fourteen other such combinations contain keys which hash to the same table entry, e.g. Arizona and Alabama when the first and last characters are used, etc. With the smallest key being only four letters long, one can choose the 1st, 2nd, 3rd or 4th letter from the front as the first letter, and do likewise counting from the end of the key, for the second letter. This generates sixteen different possible combinations in this case, disallowing letter wraparound when counting forwards or backwards in search for these two positions. I used the 1st and 3rd from the last as the two positions selected and found that: A, N, O and I occurred quite frequently (15,12,12, and 11 times respectively); S and M a little less than that (9 and 8); and T, C, G and W even less (5,5,4,4). The other letters that appeared twice (V,H,U,P,K) were placed into the "pair" category.

Now, since so many of the keys are involved with those first four popular letters, I hoped to spread those keys out in the hash table by attempting to assign relatively different weights to those four letters. In fact, I thought A could get zero, N - 10, O - 20, and I - 30. This worked out fairly well, but did cause a few collisions, so I attempted to bump these weights by plus or minus one, and found that 0, 9, 21, and 30 did work out quite well. When working with the next letter cluster (M and S), I halved this "spread" factor to five and tried 0 and 5, but had to use 0 and 4 due to a few collisions, some of which were "guaranteed collisions". Finally, I worked through the group with T, C, G and W and then began working with the pairs. At this point, using this data set, all keys had at most one letter still unassigned and it was either a wildcard or part of a pair. Therefore, all possible assignments can be determined for each letter that would allow both keys to fit into the hash table (for all five paired letters). This group of values can then be searched for values which would allow all corresponding keys to uniquely map into the table. Once this is done, all that remains is to put the remaining keys into empty table slots by assigning the appropriate value to the wildcard letters. (There are some other possible cases which must be dealt with, but the interested reader can find out more about these in [5].)

The strategy that really improved my effectiveness in performing the search relied upon recognizing "guaranteed collisions", which are illustrated by the following example. Let's say that there are two keys, one with a length of four and the two letters N and K chosen, while the other key has thirteen letters, with the letters K and A used. If A has already been assigned a weight of zero, then N can not be assigned the value nine, because no matter what is then assigned to K, the two keys will end up in the same table position (0 + 13 + K = 9 + 4 + K). The recognition of such guaranteed collisions I believe can dramatically lessen the search for the desired weights, given an efficient data structure for facilitating the quick determination of such collisions. After implementing these ideas and writing a short article about them [5], I came across the paper by Cook and Oldehoeft[2], described next.

The Strategy of Cook and Oldehoeft

The main premise used here is to work with a single letter and all of the keys which would be placed into the hash table (when the letter's weight is assigned) "simultaneously". Using the case from the previous section (where a key having length 4 with N, K, and another key with length 13 and A, K, and A's weight is zero and N's weight is 9), this collision won't be detected until K's weight is assigned. (If K is not a popular letter, much work will have been done for nothing!) At this time, unlike Cichelli's method which will have to backtrack up to the last letter assigned, Cook and Oldehoeft's method can, in this case, immediately go back to the most recently assigned weight, for A or N, and continue the search from there, after incrementing that weight. Some other ideas concerning the ordering of the keys with this approach are:

- Place keys with identical first and last letters as near to the top of the ordered list as possible by assigning a large count to those letters.

- After determining the frequencies for each letter appearing first or last, form a triple for each key - (first, last, length) - and switch first and last in the triple if the frequency for first is less than that for last.

- Using the letter that appears second in the triple, sort the keys by the frequency of that letter.

- Finally, assign weights to the letters in the second position of the triples, starting at the top of this list of keys (and processing all keys with that letter in the second slot of the triple) and handle collisions by backtracking or by working up the list as previously mentioned, where applicable. (The first entry in the triple has a larger count and therefore will either already have been assigned, or will be the same letter as the second entry, or will never get reassigned and will remain zero. This latter case typically doesn't cause a problem, but it can cause the program to indicate there are no such weights to be found, when another non-zero value could work fine. This occurred when I used data set #1 in the Appendix, and is why it is not included in the averages given in the next section.)

- Uses a negative weight for a wildcard letter to place a key into the hash table if necessary.

- No determination of MAX is necessary! This method will start the current letter's weight at zero and increment it until either an empty slot in the table is found, or the computed hash value exceeds the hash table size and backtracking begins.

Presentation of Results

To compare these three methods, I had to modify the Cook and Oldehoeft, and Cichelli programs to accept and use the same feasible positions that my program was using, instead of always using the first and last letter. (Curtis Cook sent me a copy of their program, and I implemented one for Cichelli.) I then wished to see how much adding the MOD operation and the overhead for checking for guaranteed collisions would improve the Cichelli algorithm.

First of all, the increased performance with the addition of MOD to Cichelli was so dramatic for the few cases I attempted (and finding the appropriate MAX value seemed to be so unnecessary now) that it was obviously a very useful improvement, as will also be seen in Cook and Oldehoeft. The first two lines in the Appendix illustrate how also adding the check in Cichelli for avoiding guaranteed collisions helped tremendously in 5 of the 14 cases. The bottom two lines in the Appendix show that there were only 3 cases that the addition of MOD to Cook and Oldehoeft's method had a modest improvement. (Panti and Valenti[6] also researched this idea.)

For an overall performance measure, I averaged the times for applying these methods to cases #2-#14 (leaving out #1 as mentioned in the previous section) and found that Cichelli, with MOD and the check for guaranteed collisions, took 33.63 seconds. Cook without MOD was 1.41, and with MOD was 0.198. Adding guaranteed collision detection to Cook was a net loss, because there was more overhead in doing the checks than was gained back by savings in backtracking time; the average was 0.307. The Trono method averaged 0.411, but finished a little quicker in 8 of the 13 cases than Cook, so some further investigation was pursued.

I created a program that would randomly generate keys whose letters followed a published distribution for character usage. This program would generate X keys, and then X + 5 keys, and so on, where each subsequent set of keys was the same as the previous list with the exception of the keys appended at the end of the list. I then tested the programs and then generated another such set and tested again. In one case, the Trono method appeared to be superior, and in the other case, Cook's method using the MOD operation was. The results of these tests are given in Table 3.

Table 3

First set of "random" words

#keys/set 40 50 60 65 70 75 80 85 90 95 100 105 110

Trono 0.07 0.10 0.09 0.26 3.08 4.29 27.7 15m 2HR 9HR >94HR --- ---

Cook 0.17 0.18 0.41 2.42 1.65 19HR >90HR -- --- --- ----- --- ---

Ck w/MOD 0.16 0.19 0.22 0.20 0.44 7m 1HR >120H --- --- ----- --- ---

Second set of "random" words

Trono 0.06 0.08 0.07 0.11 1.36 5.19 1.79 87.5 75.5 2HR 10HR 25HR >95HR

Cook 0.15 0.18 0.40 0.24 0.30 89.1 431. 3HR 13HR 8HR >100HR ---- -----

Ck w/MOD 0.19 0.19 0.22 0.25 0.35 0.31 0.28 1.91 25.0 41. 210.9 3HR 75HR

These tests highlight what other researchers have found: that the weight assignment operations are very sensitive to the order of the letters that are assigned and slight perturbations in that order can create a significant difference in performance. The best algorithm I've read about for determining MPHFs[4], doesn't seem to suffer from this problem and also has shown linear behavior for data sets in the hundreds of thousands.

Summary

This paper briefly outlined three different approaches to finding a set of weights that will uniquely place a static set of keys into a fixed size hash table. The addition of the MOD number_of_keys operation was shown to definitely improve Cichelli's basic, brute force approach, and it also gave a modest performance boost to the approach developed by Cook and Oldehoeft. The additional overhead of checking to avoid guaranteed collisions is quite cost-effective in the clustering approach of Trono, but does not seem to be needed in Cook and Oldehoeft's approach because it is a designed into their method.

References and Bibliography

[1] Minimal Perfect Hashing Functions Made Simple, Cichelli. Communications of the ACM, Volume 23, #1, 1980.

[2] A Letter Oriented Minimal Perfect Hashing Function, Cook and Oldehoeft. ACM SIGPLAN Notices, Volume 17, #9, 1982.

[3] Hashing for Dynamic and Static Internal Tables, Lewis and Cook. IEEE Computer, October, 1988.

[4] Practical Minimal Perfect Hash Functions for Large Databases, Fox, Heath, Chen and Daoud. Communications of the ACM, Volume 35, #1, 1992.

[5] An Undergraduate Project to Compute Minimal Perfect Hashing Functions, Trono. SIGCSE Bulletin, Volume 24, #3, 1992.

[6] A Modulus Oriented Hash Function For the Construction of Minimal Perfect Tables, Panti and Valenti. SIGPLAN Notices, Volume 27, #11, 1992.

[7] Using Tries to Eliminate Pattern Collisions in Perfect Hashing, Brain and Tharp. IEEE Transactions on Knowledge and Data Engineering, Volume 6, #2, 1994.

[8] Fast Identification of Ada and Modula-2 Reserved Words, Sebesta and Taylor. Journal of Pascal, Ada and Modula-2, March/April 1986.

Appendix

Static set #1 2 3 4 5 6 7 8 9 10 11 12 13 14

of keys 12 25 28 28 31 34 36 36 39 39 50 57 59 60

distinct 14 25 20 20 16 26 21 21 21 19 20 23 22 22

characters

Pure Cichelli

with MOD * * * *

 # Tries 68 4884 5608 354K 1672 37M 2469 500 952K ---- ---- --- 2M ---

 Time 0.07 0.08 0.09 2.56 0.09 21HR 0.09 0.05 4.59 > 40 HOURS 3HR >40

Same as above

without guaran-

teed collisions

 # Tries 68 4884 5536 224 188 361 648 407 913K 304 3383 1K 2K 124K

 Time 0.10 2.14 2.17 0.17 0.14 0.24 0.31 0.23 384. 0.20 1.45 .65 1. 44.1

Trono's method

 # Tries 31 26 64 72 157 114 92 96 118 117 136 811 2K 7K

 Time 0.06 0.28 0.09 0.08 0.13 0.08 0.09 0.10 0.10 0.11 0.11 0.4 1.1 2.7

Cook & Oldhoeft

 Time --- 0.14 0.14 0.14 0.14 0.15 0.15 0.19 1.41 0.16 0.17 0.2 6.1 9.2

Cook & Oldhoeft

with MOD

 Time --- 0.15 0.15 0.14 0.14 0.15 0.16 0.17 0.20 0.16 0.19 0.2 .35 .53

* implies that no solution was found in the allotted time listed. Cook and Oldehoeft's program needs to be modified to find a solution for data set #1.

The static sets #1, #5, #7, and #10 are from [1], while sets #6, #8 and #12 are from [2], with sets #2-4, #11 and #14 listed in [5], and finally sets #9 and #13 can be found in [8].

