
Modeling Seashell Morphology

George L. Ashline

Department of Mathematics

Saint Michael’s College
Colchester, VT 05439

gashline@smcvt.edu

Joanna A. Ellis-Monaghan

Department of Mathematics

Saint Michael’s College
Colchester, VT 05439

jellis-monaghan@smcvt.edu

Zsuzsanna M. Kadas

Department of Mathematics

Saint Michael’s College
Colchester, VT 05439

zkadas@smcvt.edu

Declan J. McCabe

Department of Biology

Saint Michael’s College
Colchester, VT 05439

dmccabe@smcvt.edu

June 23, 2009

Abstract

Modeling the beautiful and varied shapes of seashells sculpted by nature is an

aesthetically appealing application of several concepts typically introduced in multi-

variable calculus. We use vector calculus tools to generate three-dimensional models of

mollusk shells from growth measurements. We suggest a method for measuring shell

specimens to determine necessary model parameters. We also provide Maple code

for the modeling and several project handouts designed for various levels of student

independence and preparation.

MATHEMATICAL FIELD: Calculus.

APPLICATION FIELDS: Malacology, paleontology, and marine biology.

TARGET AUDIENCE: Students in multivariable calculus.

PREREQUISITES: Multivariable calculus including space curves, parameterized

surfaces, Frenet frames. Use of a computer algebra system for curve-fitting and

generating three-dimensional graphics.
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1 Introduction

The elegant shape of seashells has always attracted the eye of the artist, the scientist, and the
mathematician. Despite the staggering variety of shell shapes found in nature, the growth
of almost all seashells can be described in terms of three exponential functions and a closed
curve that describes the shape of the shell’s aperture, or opening. The model developed
here is an aesthetically appealing application of several concepts typically introduced in
multivariable calculus; it reinforces students’ understanding of curves and surfaces in three-
dimensional space, in particular, Frenet frames and parameterized surfaces. It also offers a
taste of the challenges of collecting and using data in the modeling process. To model the
morphology of specific shells, students take measurements from shell X-rays or photographs
of cross-sections. They use these data to estimate several growth parameters that determine
the overall three-dimensional shape of the shell. Curve-fitting is then used to more accurately
model the aperture, enhancing the detail of the final model.

We focus on mollusks in the class Gastropoda. This class includes the familiar garden
snails, slugs, and edible snails as well as a diverse array of freshwater and marine species,
including periwinkles and whelks. Most shelled gastropods have a shell consisting of one
piece, which is typically coiled or spiral in shape. Mollusks with one shell are referred to as
univalves, while those with shells consisting of two parts, such as clams, mussels, and oysters,
are called bivalves. Gastropods enlarge their helical shells by depositing fresh material at
the lip of the aperture, or opening of the shell. The turns of the spiral of the shell are called
whorls; the last-deposited and largest whorl of the shell is termed the body whorl, and the
older, smaller whorls constitute the spire of the shell. Gastropod shells are composed largely
of calcium carbonate overlaid by a tough protinaceous material called conchin or conchiolin.
The protinaceous layer or periostracum imparts shell color in most cases [Rupert and Barnes
1994].

While the majority of shells have the asymmetrical helico-spiral shape described elo-
quently by D’Arcy Thompson (see Section 2), some shells such as the limpet are more
symmetrical, and others like the cowrie shells are superficially bilaterally symmetric because
each new whorl completely envelops previous whorls. We will work with the more typical
helico-spiral shells, since their growth parameters may be more readily approximated.

From a strictly biological point of view, mathematical models of gastropod shells are of
interest for several reasons. Extrapolations beyond the size of a particular shell can be con-
structed and viewed to determine whether the resulting shape retains its integrity or results
in a loose spiral no longer connected to previous whorls. One can also determine if additional
whorls would continue to increase the cross-sectional area of the aperture or if the aperture
would be impinged upon by previous whorls, thus making the shell uninhabitable. This
would indicate whether the particular growth parameters limit the range of sizes possible for
a given species. The parameters can also aid in classifying the organisms by locating each
species in a parameter space where each axis corresponds to one of the growth parameters.
This helps to determine the spectrum of possible shell forms and may elucidate the relation-
ship between different species [Raup 1966]. Finally, cross-sections of embedded fossils can
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be measured and modeled to produce three-dimensional renderings without risking damage
to valuable specimens.

In Section 2, we develop the parametric equations that model the surface of the shell.
Section 3 describes the process of measuring a shell X-ray to determine the growth parameters
and create a model of a particular specimen of Epitonium magnificum. The effects of varying
the model parameters are discussed in Section 4, as are modifications to include surface
ornamentation. Project handouts are included in Section 5. Section 6 provides Maple code
for computing and plotting shell models; the process of modeling E. magnificum is included
as a sample. Maple code for generating all of the color plates is also included here. The final
section is an annotated list of references and resources for seashell modeling.

2 Developing the Model

The model we develop below is largely based on Prusinkiewicz and Fowler [2003], or Chapter
10 in Meinhardt [2003], particularly in the use of a Frenet frame to position the aperture.
However, we loosely follow Jirapong and Krawczyk [2003] in taking measurements from a
cross-section of the shell and using curve-fitting methods to fit exponential functions to the
data. The underlying idea, captured by D’Arcy Thompson in his classic work On Growth

and Form, is this:

The surface of any shell...may be imagined to be generated by the revolution
about a fixed axis of a closed curve, which, remaining always geometrically similar
to itself, increases its dimensions continually.... In turbinate shells, [any given
point on the generating curve]... partakes, therefore, of the character of a helix, as
well as a logarithmic spiral; it may be strictly entitled a helico-spiral [Thompson
1961, 189].

To visualize the growth of the seashell, we begin with a helical spiral rotating about
the z-axis. Both the radius and the height increase as the animal grows, so the shell grows
upwards along the z-axis, with the small end toward the origin, and the large open end
further up the z-axis. The aperture is a closed curve that sweeps along this helical spiral,
growing larger, but remaining geometrically self-similar as it moves along. See Figure 1,
where we have flipped the image upside down to present a more typical view of the shell.

Seashell growth is in principle self-similar; the rate of change of both the radius and
height of the helical spiral are proportional to their size, that is, both grow exponentially.
Thus, if t is the angle of rotation about the z axis, the radius and height functions are given
by:

Radius: r(t) = r0e
krt;

Vertical Displacement: z(t) = z0e
kzt.
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Figure 1: Growing circles sweep along the helical spiral to generate the shell surface.

Here kr and kz are the nonnegative growth constants. The constants r0 and z0 are initial
radius and height values. The helical spiral is then given by the space curve:

H (t) = 〈r(t) cos t, r(t) sin t, z(t)〉 .

Note that this helical spiral grows in the clockwise direction and thus produces a right-
handed, or dextral, shell. This is by far the most common form, although a few genera
normally produce sinistral shells, and rarely, a sinistral specimen of a normally dextral
genus may occur [Oliver, 2004].

Just like the height and radius, the size of the aperture grows exponentially as the aper-
ture sweeps along the helical spiral. We model the aperture as the product of an exponential
growth function a(t) and a ‘shape’ function P (s). Here, as above, t is the angle of rotation
about the z-axis. P (s) is a polar function where s is a radial angle measured about the
center of the aperture (a point on the helical spiral). Thus, the aperture is modeled by:

P (s) · a(t), with a(t) = a0e
kat,

where ka is the nonnegative growth rate and a0 is the initial aperture size. If P (s) is set equal
to the constant 1, the aperture is simply a circle whose radius increases exponentially with
t, as in Figure 1. It is easiest to begin by modeling a shell with a nearly circular aperture, or
to use a circle as a first approximation of the aperture shape. When the rough overall form
of the shell has been achieved, the aperture shape can be modified to give a more accurate
image. The parameters r0, z0 , a0, kr, kz and ka for a particular gastropod may be estimated
from measurements taken from the shell, as described in Section 3. The effects of varying
these parameters are discussed in Section 4.

The shapes of shell apertures vary widely: some are nearly circular or elliptical, others
nearly triangular, and still others quite irregular. Currently, there is no known elementary
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function model for the aperture, as there is for the helical spiral. Thus, the aperture is
typically approximated by using a variety of curve-fitting techniques, as discussed in Section
3.

It now remains to locate this aperture properly in space as the shell grows. The shell
aperture lies in the plane perpendicular to the helical spiral at each point, that is, perpendic-
ular to the tangent vector to the helical spiral space curve H(t). Because of this, the model
uses the Frenet frame of the helical spiral to position the aperture. The Frenet frame, also
known as the TNB frame, consists of the unit tangent, normal and binormal vectors to a
curve, here H(t). We position the aperture in the the normal plane, which is perpendicular
to the tangent vector and contains the normal and binormal vectors, as shown in Figure 2.
This controls the tilt of the shell opening to give a life-like result. Without the Frenet frame,
the shell opening and any ridges would always be parallel with the z-axis, thus inaccurately
modeling the shell morphology [Prusinkiewicz and Fowler 2003].

Figure 2: Circular shell aperture lying in the plane normal to H(t).

To find the unit normal and binormal vectors, respectively N(t) and B(t), of the helical
spiral H(t) at a given t, first find its unit tangent vector

T (t) = H ′(t)/|H ′(t)|.

Next,

N(t) =
T ′(t)

|T ′(t)|
,

and
B(t) = T (t)× N(t).

The surface S of the shell is then modeled by:

S(s, t) = H(t) + P (s) · a(t) (cos(s)N(t) + sin(s)B(t)) ,

where 0 6 s 6 2π and, generally, t > 0.
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The equation for the two-parameter surface S(s, t) makes it easy to visualize how the
surface is traced out: for each value of t, the tip of the vector H(t) is a point on the helical
spiral; the second term is a radial vector that traces the aperture curve centered at that
point in the normal plane. See Figure 3.

Figure 3: The shell surface traced out as the sum of two vectors.

Ultimately, six parameters and one function are used in this equation for modeling shell
morphology: the initial value parameters r0, z0, a0 and the growth parameters kr , kz, ka for
the exponential functions that fit the shell measurements, together with the radial aperture
shape function P (s). By adjusting the parameters that control the helical spiral and aperture
growth and specifying P (s), a large variety of naturally occurring shells can be modeled and
fantasy shells can be created as well.

3 Measuring the Shells and Fitting the Model

This section gives explicit directions for measuring shell specimens to determine the necessary
model parameters r0, z0, a0, kr , kz, ka and to approximate P (s). It is possible to work directly
from an actual seashell to obtain the parameters, either by taking external incremental caliper
measurements or by cutting the shell lengthwise through its axis in order to reveal the interior
structure. Both of these methods have been used by prior modelers [Jirapong and Krawczyk
2003, Prusinkiewicz and Fowler 2003], but both require access to the actual shell. To simplify
the process, we chose to work with X-ray images of shells available for purchase [Crow 2009],
and we used a hard copy of a shell image large enough to be easily measured with a ruler
(about 15 centimeters tall works well). The measuring and fitting process is illustrated in
Figures 4 and 5 for E. magnificum, a shell with nearly circular apertures. The Maple code
in Section 6 carries out the calculations and renders the final image.
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We begin by drawing the (vertical) axis through the image of the shell and choosing the
point that will be designated the “apex” or tip of the shell. It is impossible to locate the apex
definitively, and in some cases the true apex has been worn away, so we simply approximate
as best we can. The variable t is set to zero at this point, and it increases by 2π each time
the aperture completes a rotation about the axis, thus creating another whorl of the shell.
Our model is “upside down” from the way shell images are typically depicted; this is because
we think of our shells as growing upward from the origin. When we display the images, we
typically rotate them to put the apex at the top again, as in Figure 1 and the color plates.

To determine the parameters kr and kz, we first need to locate the center of each of
the cross-sectional apertures. Strictly speaking, the shell has only one aperture, the actual
opening, but the cross-sections of the shell chamber visible in the X-ray image were the
apertures at some times in the past as the shell was growing, so we refer to these cross-
sections as apertures as well. Caution is needed in taking measurements of the smallest few
apertures. Not only are the apical whorls of the shell hard to measure due to their size, but
they were laid down by the animal in its larval stage and are typically structurally different
from the rest of the shell. Furthermore, when modeling a cut shell, the chambers near the
apex may be distorted as the cut is often somewhat off-center. Finally, at the opposite end
of the shell, the actual opening of the body whorl of the shell may deviate from the shape
of the other cross-sections, so, if possible, it is best not to use it for measurements either.
There should be at least 4 feasible cross-sections, using the actual opening and the apex
chambers only as a last resort.

The whorl cross-sections correspond to t values that are integer multiples of π; even
multiples for sections on one side of the axis, odd for those on the other. For the model of E.

magnificum, we choose 5 cross-sections to use for our calculations and denote these t values
as ti, for i = 1, 2, . . . , 5. See Figure 4. Using a ruler held parallel and then perpendicular to
the shell axis, we draw rectangles circumscribed about each aperture, and locate the center,
Ci, of each rectangle using diagonal intersections (if the apertures are circular, these should
be their centers.) The points Ci are used to determine the path of the helical spiral that
acts as the frame of the shell, and thus specify the growth functions r(t) and z(t).

We draw horizontal line segments from each center Ci to the shell axis; these lengths
are denoted ri. Next, we measure the vertical distance along the axis from the apex to the
midpoint of each rectangle; these height measurements are denoted zi. These data are given
in Table 1. We then fit an exponential curve to the ordered pairs (ti, ri) to find the function
r(t); another exponential is fitted to (ti, zi) to find z(t). This is done using the command
ExponentialFit in Maple’s Statistics package to determine the parameters r0, kr, and z0, kz.
The helical spiral can now be plotted.

To determine a(t), the aperture growth function, we measure the half-heights of the
rectangles; these are denoted hi, and also given in Table 1. With the pairs (ti, hi), we
again use the Statistics package to find the parameters a0 and ka that give the best fit
for the exponential function a(t). Note that even if the apertures are circular, it is likely
that ri 6= hi because the apertures are generally not tangent to the shell axis. The coiling
shell forms a cone-shaped structure, the columella, running along the axis of the shell, and
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Figure 4: Measuring the radii, heights, and aperture heights from an X-ray of E. magnificum
(not to scale).
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Table 1: Growth parameter measurements for E. magnificum, with θ in radians, and ri, zi,
and hi in cm.

θ ri zi hi

1 10π 0.4 2.5 0.55
2 12π 0.5 3.6 0.65
3 14π 0.6 5.1 0.85
4 16π 0.8 7.0 1.15
5 18π 1.0 9.7 1.50

the apertures connect to it. This cone, which may be solid or hollow, forms the structural
support of the shell, and the gastropod’s foot is attached to it by means of the columella
muscle, which retracts the entire animal into the shell [Jirapong and Krawczyk 2003; Rupert
and Barnes 1994]. A model of the shell with circular apertures can now be plotted. See
Color Plate 1.

For E. magnificum, the likeness is quite good, and the model represents the shape and
dimensions accurately. Notice, however, that the apertures on the X-ray image are not
perfectly circular. Proceeding on the widely accepted assumption that whorl cross-sections
are all geometrically similar, we choose one of the apertures (in this case, the one at t = 18π)
and approximate as best we can the radial shape function P (s). One difficulty is that in an
X-ray or cross-section of the shell, the displayed openings are all in a plane parallel to the z-
axis, and thus are not actually in the plane of the aperture. However, for most shells, the ‘tilt’
toward the tangent vector is small enough that we can still get a reasonable approximation
of the aperture shape from the available cross-section. Apertures vary widely, and there are
no rules to guide us about what form to use for the radial function; insight and ingenuity
are encouraged in this process.

Figure 5: Radial measurements for the aperture, with the polar axis indicated by an arrow-
head (not to scale).
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Table 2: Radial measurements for aperture P (s).

s (degrees) radius (cm)

0 0.52
47 0.58
90 0.54

133 0.60
180 0.54
227 0.60
270 0.52
313 0.46
360 0.52

We begin by taking some radial measurements using a protractor and ruler, as shown in
Figure 5 and given in Table 2. We align the polar axis at s = 0 with the normal vector, and
measure counterclockwise from there. This orients the aperture appropriately with the way
the surface is traced by S(s, t). Figure 5 shows the polar axis as horizontal, even though the
normal vector is actually tilted slightly off the horizontal. Nevertheless, this approximation
gives acceptable results.

The number of measurements needed to produce a realistic rendering depends on the
aperture shape: based on our experience, if the aperture is fairly smooth and rougly circular,
6 or 8 points might suffice, while if it is irregular, many more points may be needed. Plotting
these measurements as functions of the central angle s may suggest a form for P (s). For
some shells, a sinusoidal curve might produce an appropriate ribbed effect. The first few
terms of a Fourier series may produce a better fit, or a polynomial function of an appropriate
degree might work. Curve-fitting packages provide the option of choosing any of these forms
to be fitted, as long as the function parameters appear linearly. However, a piece-wise linear
or spline approximation may be needed for a good fit. Maple’s “Interactive” curve-fitting
feature can be a quick and useful tool for this part of the modeling. For E. magnificum, we
use a Fourier sum with terms up to sin(3s) and cos(3s). The shape of the aperture may be
seen in the x− y plane by plotting P (s) · 〈cos(s), sin(s)〉. Once P (s) is determined, we have
all the information necessary to create a life-like three-dimensional model of the shell, shown
in Color Plate 2. This rendering is very close to the actual shell shown in Color Plate 3.

4 Parameter Effects and Surface Ornamentation

Whether attempting to model an actual shell specimen or creating seashell shapes purely
for pleasure, it is important to understand how the various parameters affect the shape of
the shell, and how to achieve some of the common surface ornamentations such as ribs and
ridges. We have found that creating fantasy shells is not only a lot of fun and artistically
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appealing, but also develops a sense of the parameter interactions. Color Plates 4 through
12 show “designer shells” that have been created to illustrate various parameter interactions,
apertures, and surface orientation.

The helico-spiral H(t) described in Section 2 provides the structural frame for the shell.
The radial and vertical growth parameters kr and kz, and, more specifically, their ratio,
determines the shape of the helical spiral envelope (the curve through the points where the
spiral intersects the first quadrant of the x− z plane) and hence the overall silhouette of the
shell. If kr = kz, then the envelope will just be a straight line, as in Figure 6, and the result
is usually a conical shell, as in Color Plate 8.

Figure 6: Envelope of the helico spiral: linear (left), pointy shell (center), flattop shell (right).

More generally, if kr · kz 6= 0, then the envelope is a power function, with z as a function
of r, as follows. Solving the radial equation r = r0e

krt for t, we obtain t = (1/kr) ln (r/r0).

Substituting this into z = z0e
kzt, we find that z = z0e

(kz/kr) ln(r/r0) = z0e
ln((r/r0)

(kz /kr)), and
hence

z =

(

z0

r
kz/kr

0

)

rkz/kr . (1)

Thus, the ratio of kz to kr determines whether the shell will have a pointy top or a flat top,
as illustrated in Figure 6. From equation 1, we see that if kr is the greater, we have a shell
with a pointy tip as in Color Plate 7 , and if kr is the lesser, we have a flat-tipped shell, as
in Color Plate 9.

Note that the ratio of r0 to z0 scales the power function in Equation 1, so that, for
example when kr = kz, this ratio controls the slope of the envelope of the helical spiral
cone. More generally, the parameters r0 and z0 determine how vertically stretched out a
shell appears. However, as discussed below, other factors also influence the final silhouette.

Another important factor affecting shell shape is the aperture growth function a(t). The
magnitude of the growth constant ka will determine how “tightly packed” the shell whorls
appear. If ka is too small with respect to kr, the shell forms a loose tube-like spiral; if ka is
too large, it “swallows up” previous whorls. This is illustrated by comparing Color Plates 10
and 12 to Color Plate 8. The shape of the aperture also contributes to the shell’s silhouette:
two shells with the same helico-spiral H(t) but different aperture shapes, say a circle and
a triangle, would exhibit significantly different morphologies. Examining some shells with
different cross-sections should make this clear. It might also be an interesting exercise to
construct such shells for comparison.
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Shells exhibit surface sculpting of many different types, described by terms such as ribs,
grooves, cords, granules, nodules and scales [Egerton 2008]. Spiral and axial ribs are the
most basic of these. Spiral ribs run parallel to the helico-spiral H(t). Adding a periodic
function in s, such as a sine function of appropriate period and amplitude, to an aperture
function will create spiral ribs. Axial ribs, or ridges, are orthogonal to H(t). On first glance,
it may seem that ridges are vertical, that is, parallel to the z axis. But closer examination
of shell specimens shows that ridges occurring in nature, in fact, lie in planes perpendicular
to the helico-spiral H(t) [Prusinkiewicz and Fowler 2003]. Some of these ridges are, actually
varices, thickenings that result from pauses in the growth of the shell, so they must lie
in the aperture plane [Oliver and Nicholls 2004]. This confirms that the Frenet frame is
the appropriate method for modeling shells, and it allows ridges to be incorporated in a
straightforward way. In modeling the shell exterior, ridges may be regarded as periodic (or
at least recurrent) changes in the aperture. Ridges can thus be incorporated by modifying
the shape function so that it varies with t as well as s. Letting P̂ (s, t) = P (s) · Q(t), with
the variables separated, keeps the aperture shape geometrically similar along the length of
the helico-spiral, but allows t-variations that may create ridges. Allowing P to be a more
general function of s and t would permit aperture shape to vary in all sorts of ways and not
remain geometrically self-similar. Shells with ribs and ridges are illustrated in Color Plates
4, 5, and 6.

Some shells have highly convoluted apertures that may simply not be expressible as a
polar function. Other methods for defining the generating curve, such as Bézier curves,
have been used [Prusinkiewicz and Fowler 2003], but these are beyond the scope of our
two-parameter model.

Despite careful measuring, the resulting models often differ somewhat from the chosen
specimen. One source of error we have noticed is that the model can be quite sensitive to the
initial values r0 and z0. The helical spiral might seem to have the correct proportions based
on the measurements, but the final shell appears too elongated or too squat. In that case,
some minor ad hoc adjustments may be necessary to achieve a good rendering. Another
difficulty is that, for both shell X-rays and cross-sections of actual shells, the visible cross-
sections lie in a plane containing the z-axis, not in a plane determined by the Frenet frame,
so the aperture curve derived from measurements is distorted. A nice extra-credit problem
is to adjust the measurements for distortion by taking into account how far the Frenet frame
is tilted away from the vertical. A third caution is that some shells with elongated apertures
(Cymantium Clandestina for example) may have have a small narrow portion of the aperture
that does not lie in the normal plane, but rather inclines toward the z-axis.

We initially estimated designer shell parameters from photographs, but then also gave
free rein to artistic license. Our color patterns result from specifying RGB colors as functions
of s and t in our Maple plots. Although it is fun to play with the color patterns this way, it
generally does not replicate actual shell coloration (except stripes). See Meinhardt [2003] for
further information, and stay tuned for a seashell patterning sequel to this module! Bivalves
(such as clams or cockles) may also be modeled using the methods shown here, as in Color
Plates 11 and 5, but we have not yet found a satisfactory way to estimate the parameters
from shell measurements. However, eyeball estimates and a good understanding of how
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the parameters control the shape of the shell can still lead to lovely renderings. The shell
parameters and aperture functions used to generate the designer shells in Color Plates 4
through 12 are given in Section 6.3

5 Project Handouts

The handouts below offer several possible approaches for this project, ranging from highly
independent to quite structured. For an independent approach, we provide Handout I only.
For classes or students needing more guidance, we also provide Handout II, which breaks
down the problem into smaller steps. Handout III further assists students with organizing
their work. We have successfully used the Handout I only approach in class and were
gratified by the enthusiasm with which students grappled with the problem. They were
very excited by having an open-ended application and not being led by the hand through
it. We encourage such independent students to share model drafts with us, if they wish to
check their progress. However, as project work contiues, some students need suggestions for
breaking down the steps and we then provide Handout II to them. Handout III can help
streamline assessment, particularly with less prepared students. Handout IV adds a writing
component to the project.

Developing the model itself can be a valuable experience for well-prepared, self-motivated
students. In this case, we provide students only with Handout I and part of the resource
list from Section 7. We require students to gain morphology and modeling information
directly from the literature without the benefit of the discussions contained in this module.
By including Handout IV, we give students an opportunity to develop mathematical writing
skills and more closely replicate a real-world experience in applied mathematics. Students
completing a literature search can explore the range of works on this topic and may well
improve on the model presented in this module.

In our courses, we begin this project after students have learned about space curves
and Frenet frames. To facilitate the shell modeling, we introduce parameterized surfaces
earlier than our textbook. We also loosely describe how a shell model is formed by the
aperture curve sliding along the helical spiral, but mostly leave students to the satisfaction
of independent discovery.

5.1 Handout I (highly independent)

Choose a seashell, either an intact shell or some form of cross-section, and develop the
equations to model it. Write a program with course software to generate a three-dimensional
model of the shell. The code must be well-documented (i.e. contain detailed explanations
describing each line of code). In addition, demonstrate your understanding of how the various
parameters in your model control shell morphology in a brief written explanation.
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5.2 Handout II (breaking the problem into steps)

1. Choose an actual shell to model. You need to pick a shell where you can get a good
picture of a cross-section of the inside of the shell. For example, you may use a shell
X-ray or cross-section photo obtained from a text or reputable website.

2. Measure the shell to get the parameters necessary to write the equation for the helical
spiral going through the center of the shell. You will need to take measurements at
the same location in every opening on one side of your shell (or both sides if there are
few openings). Use course software to fit a curve to these data, estimating the growth
rates of the height and radius. Use this information to determine an equation for the
helical spiral. Plot the helical spiral using course software.

3. Compute the Frenet frame at some convenient point on the space curve. Use course
software to plot the curve together with the TNB vectors at the point.

4. Find the normal plane at the same point, and use course software to plot that plane
with the space curve.

5. Find the equation of a circle with center at that point and lying in the normal plane,
and plot it with the space curve.

6. Plot several circles of diminishing size up the helical spiral, with each circle lying in
the Frenet frame at its center.

7. Assume the aperture is a circle with radius equal to the radius of the helical spiral at
each point, and plot the resulting shell.

8. At this point, experiment with different aperture and growth functions to create and
plot several fantasy shells. Explore the impact of changing the growth rates of the
helical spiral’s radius and/or height, or modifying the initial values of the radius and/or
height.

9. Returning to your actual shell, measure 8 to 24 radial points, more if needed, on the
aperture, and fit a curve to these points using a curve-fitting tool from course software.

10. Create a three-dimensional model of your shell.

5.3 Handout III (structured format)

Submit the following work showing how you developed a model for your shell:

1. An unmarked copy of the X-ray or cross-section photo of the shell you are modeling,
with the source of the picture and the name of the shell. If possible, provide a photo
of an intact shell of the same species.
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2. A carefully marked copy of the X-ray or photo, indicating the measurements you took
to determine the helical spiral parameters.

3. A table of the helical spiral and aperture growth parameter measurements.

4. Carefully documented work showing how you derived the helical spiral.

5. Work showing how you computed the Frenet frame, normal plane, and a circle in the
normal plane at some point on the helical spiral.

6. Four printouts of the helical spiral, one with the Frenet frame, one with the normal
plane, one with the single circle, and one with several circles of increasing size.

7. A plot of a shell with a circular aperture.

8. A carefully marked picture of the actual shell aperture, indicating the measurements
you took for the curve-fitting.

9. A printout of the curve used to model the aperture.

10. Your carefully documented code.

11. A plot of a three-dimensional model of your shell.

12. At least one “fantasy shell,” developed from aesthetic principles.

5.4 Handout IV (writing component)

An important component of doing mathematics is developing the ability to learn new ideas
independently by using texts, journal articles, and colleagues. This project is designed to
give you some experience with the real thing.

Use both print and electronic resources to research and understand as much as you can
about how to model shell shapes, and then write it up as clearly as possible. The mathematics
is within your reach, but it will likely require translating notation and ideas into familiar
notation and concepts from class. This will be true of almost any scientific application you
encounter outside of the classroom. Also, many sources will not provide all of the details
that you will need for your model, so you may have to fill in and figure out a lot on your
own. Some sources may not measure the same shell features as others. Some modeling
techniques may work better than others. Again, all of this is typical of material written for a
particular scientific application, rather than for classroom use. A major goal of this project
is to provide exposure to this reality and allow you to develop skills for using your course
work in other endeavors.

Formatting guidelines

1. Include a title page and abstract.
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2. Use a mathematical typesetting tool such as LaTeX or MathType for all equations and
symbols, and prepare all figures carefully.

3. The paper must be properly referenced, with a complete bibliography at the end and
references in the text. Internet resources must be used with caution and must be
properly documented. Use MathSciNet http://www.ams.org/mathscinet as much
as possible for citation formats. Use MLA formatting for Internet sites http://www.
wisc.edu/writing/Handbook/elecmla.html, and for anything not on MathSciNet.

4. Model your paper on articles you read in your research, and consider both their struc-
ture and their content.

5. Proofread carefully. Use campus writing resources and peer review, and appropriately
edit/revise your paper before submission.

Evaluation criteria

The overall goal is a clear model describing what measurements are needed from the
shell, a formula for generating the shell, and a description of the effect of each variable in the
formula. Clarity of exposition is as important as the underlying mathematics. Indications
of a well-written paper: clear equations with careful discussions of which physical properties
of the shell are controlled by which parameters, figures that illustrate the concepts you are
discussing, and clear evidence that you understand basic vector calculus concepts and how
they pertain to this application.

Indications of a paper that needs more work: equations and/or figures copied with inade-
quate explanation, disorganized composition, poor spelling or grammar, lack of proofreading,
over-reliance on Internet sources, and inadequate referencing.

6 Maple Code

This project assumes a reasonable amount of familiarity with a computer algebra system that
generates three-dimensional graphics. We use Maple throughout our calculus curriculum, so
our students are familiar with basic function manipulation, plotting commands, and syntax
when starting this project. As part of normal multivariable calculus class work, we also
provide examples in Maple of generating space curves, parameterized surfaces, planes, and
the Frenet frame, so this project also offers excellent synthesis and application opportunities.

Below is the Maple 12 code that we developed for this project. The generic Maple
procedure, which may be used with any shell parameters, is provided first, followed by a
sample of modeling a shell of the species E. magnificum. We do not necessarily expect
students to be familiar with the procedure (proc) command used in the worksheet. Some
students use it (particularly those with some computer science background), while others
are more comfortable generating each shell plot individually. Both approaches seem to work
equally well.
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This worksheet has two parts. Part I is the procedure “Shell” that creates the plot of the
shell model. Using the inputs given in Section 6.3, this procedure will generate all the images
shown in the color plates. Part II is a sample of the modeling process for E. magnificum,
using the shell measurements given in Tables 1 and 2 to estimate the growth parameters and
model the shape of the aperture.

6.1 Part I: the procedure “Shell”

Using as input the growth parameters and the radial aperture function P, the procedure
produces a plot of the three-dimensional shell model, as well as the helico-spiral, the envelope,
and the aperture.

Parameters passed to the procedure:

• r0, z0, a0: values of the radius, height, and aperture size at t = 0;

• kr, kz, ka: the radial, height, and aperture growth rate parameters, respectively;

• P : the aperture curve, a polar radius function of the angle s around the helical spiral,
entered as a Maple expression. Note that if P is constant, the aperture is circular.
Also, to create ribbed shells, we allow P to vary with t as well as s without changing
the notation. (In the text, we use the notation P (s, t)).

• tstart, tend : the range of the angle of rotation about the z -axis;

• n, m : the number of points in the n × m grid used in generating the surface plot;

• R, G, B : color settings for the ambient light;

• l1, l2: direction for the ambient light;

• cR, cG, cB : color settings for the shell – if these are expressions in s and t, they create
the color patterns on the shells;

• phi, theta : set the viewing angle;

• STyle: the rendering style of the plot (one of: contour, hidden, line, patch, patchcon-
tour, patchnogrid, point, or wireframe).

Output variables for the procedure:

• shellplot : a plot of the three-dimensional shell rendering;

• helix : three-dimensional plot of the helico-spiral H(t);

• aptrace: a two-dimensional plot of the aperture shape function;
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• envelope: a plot of the envelope of H(t) in three-dimensional space, which is a curve
in the x − z plane.

Note that procedures must be executed within a single execution group in Maple. The
output from a procedure is usually in the form of a list, ReturnVal, found at the end of the
procedure. Recall that, if L is a list, then L[i] returns the ith entry in the list, and this is
how we choose from the list of plot structures output by the procedure.

>restart: with(plots):

>Shell:=proc(r0,z0,a0,Kr,Kz,Ka,P,tstart,tend ,n,m,l1,l2,R,G,B,cR,

cG,cB,phi ,theta ,STyle)

local r,H,FrenFrame ,NormalVec ,BinormalVec ,Apert ,shell ,helix ,

aptrace,envelope ,shellplot:

global S:

uses VectorCalculus ,plots:

r:=t->r0*exp(Kr*t):

H:= t-> <r(t)*cos(t),r(t)*sin(t),z0*exp(Kz*t)>:

helix := spacecurve ([H(t)[1], H(t)[2], H(t)[3]], t=tstart..

tend ,numpoints =1000,color = red,orientation =[phi,theta],

scaling = constrained ):

envelope :=spacecurve ([v,0,z0*(v/r0)\symbol {94}(Kz/Kr)], v=r(

tstart)..r(tend)):

aptrace := spacecurve ([P*cos(s),0,P*sin(s)],s=0..2*Pi,

numpoints = 1000, orientation = [90, -90], scaling=

constrained ):

FrenFrame := TNBFrame(H(t),t):

NormalVec := FrenFrame [2]:

BinormalVec := FrenFrame [3]:

Apert := a0*exp(Ka*t)*P:

shell := H(t)+NormalVec*Apert*cos(s)+BinormalVec *Apert*sin(s):

shellplot := plot3d([shell[1], shell[2],shell[3]],t= tstart..tend

,s=0..2*Pi,orientation =[phi, theta],scaling = constrained ,

grid=[n,m],style=STyle , light=[l1, l2, R, G, B], color = [cR,

cG , cB]):

S := [shellplot ,helix ,aptrace,envelope ]:

end proc:

Here is an example of displaying output from the procedure; the “display” command is
used to exhibit two or more of the plots together.

>Shell(.1, 1.9, .2, 0.05, 0.04, 0.05, 1-0.08*sin(15*s), -6*Pi ,

6*Pi, 100,100, 0,0,.9, 1/2, .9, sin(10*s), 1, sin(5*s), -116,

-90, patchnogrid ):

>S[1]; S[2]; S[3];

>display ({S[2],S[4]});
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6.2 Part II: modeling a shell specimen from data

We model the X-ray image of E. magnificum [Crow 2009]. The modeling proceeds in two
stages. First, we use shell measurements in Table 1 to estimate the growth parameters and
create a model with a circular aperture. Then we use the radial aperture measurements in
Table 2 to approximate the aperture shape more accurately.

Fitting exponential functions to data gathered from X-ray image measurements

Based on the shell specimen, we decide how many whorls of the shell to use to determine
the growth constants kr, kz, ka. In our shell image, five cross-sections at t = 10π, . . . , 18π are
used, as illustrated in Figure 4 . Recall that t is the angle of rotation about the z-axis. The
choice of where to set t = 0 is an “eyeball” estimate since the tip of the shell is anomalous.
We create vectors of the t values and the corresponding r measurements:

>with(Statistics ): with(VectorCalculus ):

>tvec:=evalf(< 10*Pi , 12*Pi, 14*Pi, 16*Pi, 18*Pi >):

We fit measurements of the helical radii r from Table 1 to the exponential function
r = r0e

krt:

>rvec:= <0.4, 0.5, 0.6, 0.8, 1.0 >:

>rparam:= ExponentialFit (tvec , rvec , t, output=parametervalues );

>r0:=exp(rparam [1]);Kr:=rparam[2];

We use measurements of the helical heights z from Table 1, and again fit the data to the
exponential function z = z0e

kzt:

>zvec:= < 2.5, 3.6, 5.1, 7.0, 9.7 >:

>ExponentialFit (tvec , zvec , t);

>zparam:= ExponentialFit (tvec , zvec , t, output=parametervalues );

> z0:=exp(zparam[1]); Kz:=zparam [2];

At this point, one could plot the helico-spiral to check whether measurements appear
accurate and produce a suitable spiral.

The next step is to model the aperture. We begin by using a circle centered on the
helico-spiral H(t) with its radius increasing as it travels up the spiral.

To determine the constants for the aperture growth function A(t), we use the measured
“half-height” of the circumscribed rectangles, as shown in Figure 4. Once more, we fit the
data given in Table 1 to an exponential function.

>hvec:= < 0.55, 0.65, 0.85, 1.15, 1.50 >:

>ExponentialFit (tvec , hvec , t);

>hparam:= ExponentialFit (tvec , hvec , t, output=parametervalues );

The parameter a0 is the “initial” size of the aperture/cross-section, and ka is the aperture
growth constant:
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>a0:= exp(hparam[1]); Ka:= hparam [2];

Shell model with circular aperture

We can now plot a model of the shell with circular apertures using the “Shell” procedure
and the growth parameters we have determined.

Using P = 1 produces a circular aperture with size corresponding to the measurements
taken.

>Shell(r0 ,z0,a0, Kr,Kz,Ka , 1, 0,20*Pi, 500,50, 60,0, 1,1,1,

0.98,0.9,0.8, -90, -80, patchnogrid ):

>S[1];

To see an image that resembles the X-ray, right click and view the shell without the
wireframe and with transparency adjusted to about 50%. Displaying the shell with STyle
set to wireframe helps determine the appropriate ratio of n to m in the grid setting. Adjust
n and m so that the wireframe cells on the shell surface are roughly square.

Also, the shell grows with increasing z, so the graph has been turned upside down (using
viewing angles phi and theta) to get the usual view.

Detailed aperture shape: curve-fitting for radial aperture function

We use radial measurements of the aperture at a fixed value of t to approximate the
function P (s). This section is intended as a sample only. Ingenuity is required when at-
tempting to model shells with apertures that deviate significantly from a circle. As shown
in Figure 5, we use the aperture at t = 18π, measuring radially at 8 locations (s= 0, 47, 90,
133, 180, 227, 270, 313 degrees) using a protractor. We use only the quadrental angles and
the diagonals of the rectangles; more data points are needed if the aperture shape is more
irregular. The measurement data are given in Table 2.

>with(CurveFitting ):

>anglvec := evalf(Pi/180*< 0,47,90,133,180,227,270,313,360 >);

>with(plots):

>radvec:=<1.35, 1.6, 1.4, 1.4, 1.4, 1.5, 1.6, 1.2, 1.35>;

>pts:= seq([anglvec[i], radvec[i]], i=1..9);

>Points:=pointplot ([pts], scaling=constrained ):

>display(Points);

We want to fit a curve to these points on the interval [0, 2π]. There are many possibilities
for the curve to be used, and a polynomial fit is certainly one options. When fitting to
polynomials, going more than ”once around” when fitting the curve may give a smoother
result; this can be done automatically using the wrap feaure in the interactive fitting as-
sistant. However, since the radial function is periodic, it seems natural to use a Fourier
approximation. We use terms up to sin(3s) and cos(3s). After experimentation with more
and fewer terms, this choice appears optimal since more terms don’t improve the fit and
introduce undesirable “wiggles.”
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>FourierForm := k+a*sin(s) + b*cos(s) +c*sin(2*s) +d*cos(2*s)+e*

sin(3*s) +f*cos(3*s):

>ApFit:= LeastSquares (anglvec, radvec, s, curve=FourierForm );

>FitCurve :=plot(ApFit ,s=-Pi/2..5*Pi/2, color=blue , scaling=

constrained ):

>display ({Points,FitCurve });

This curve specifies the aperture at the chosen value t = 18π.

To find the expression for P (s), note that this aperture is A(t)×P (s) = a0e
ka18πP (s), so

we need to divide by a0e
ka18π to solve for the aperture shape function P .

>a:=t-> a0*exp(Ka*t);

>P:=ApFit/a(18*Pi);

The procedure “Shell” with the growth parameters determined above and the aperture
curve P now produces a refined model:

>Shell(r0 ,z0,a0, Kr,Kz,Ka , P, 0,20*Pi, 500,50, 60,0, 1,1,1,

0.98,0.9,0.8, -90,-80, patchnogrid ):

>S[1];

>S[3];

Spiral ribs can be added to the model by incorporating an oscillatory function:

>P:=(ApFit/(a(18*Pi)))*(0.95+0.025* exp(sin(30*s)));

>Shell(r0 ,z0,a0, Kr,Kz,Ka , P, 0,20*Pi, 1000,100, 60,0, 1,1,1,

0.98,0.9,0.8, -80, -90, patchnogrid ):

>S[1];

Axial ribs or ridges are created by allowing the aperture shape to vary with t. Concep-
tually this replaces P (s) by P (s) × Q(t). Equivalently, one can replace the constant a0 by
a0Q(t) in the input to the Shell procedure.

>Shell(r0 ,z0, a0*(0.95+0.006* exp((exp(sin(30*t))))), Kr,Kz ,Ka , P

, 0,20*Pi , 1000,100, 60,0, 1,1,1, 0.98,0.9,0.8, -80, -90,

patchnogrid ):

>S[1];

We sometimes plot a section of smooth “inner shell” at the body whorl together with the
outer shell to give a more realistic image, one that reflects the different color and texture of
the inside of the shell.

>Shell(r0 ,z0, a0*(0.95+0.006* exp((exp(sin(30*t))))), Kr,Kz ,Ka , P

, 0,20*Pi , 1000,100, 60,0, 1,1,1, 0.98,0.9,0.8, -80, -90,

patchnogrid ):

>A:=S[1]:

>P:=ApFit/a(18*Pi):

>Shell(r0 ,z0, a0 -0.02, Kr ,Kz ,Ka , P, 19*Pi ,20*Pi , 50,100, 60,0,

1, 1, 1, 0.58,0.50,0.4, -80, -90, patchnogrid ):
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>B:=S[1]:

>display ({A,B});

6.3 Generating the color plate shells

Parameter values and aperture functions for the twelve seashell models shown in the color
plates are given below. Appending these Maple commands to the Maple 12 procedure “Shell”
in Section 6.1 generates each of the color plates.

Note: In Maple 12, right clicking on a graph gives a “glossiness” option, which we used
to enhance a few of these images. For a couple shells, we have also plotted a contrasting
“inner shell” to more closely mimic nature and to clarify the image at the body whorl.

Plate 1. Basic model of E. magnificum using circular apertures. Parameters are deter-
mined from measurements; see worksheet in Section 6.2.

> Shell(r0,z0,a0, Kr ,Kz,Ka, 1, 0,20*Pi, 500,50, 60,0, 1,1,1,

0.98,0.9,0.8, -90, -80, patchnogrid ):

Plate 2. Refined model of E. magnificum incorporating Fourier aperture and surface or-
namentation. Shell interior plotted separately in solid color for the body whorl and displayed
together with exterior.

> Shell(r0,z0 , a0*(0.95+0.006* exp((exp(sin(30*t))))), Kr,Kz,Ka,

P, 0,20*Pi, 1000,100, 60,0, 1,1,1, 0.98,0.9,0.8, -80, -90,

patchnogrid ):

> A:=S[1]:

> P:=ApFit/a(18*Pi):

> Shell(r0,z0, a0 -0.02, Kr,Kz,Ka, P, 19*Pi ,20*Pi, 50,100, 60,0,

1, 1, 1, 0.58,0.50,0.4, -80, -90, patchnogrid ):

> B:=S[1]:

> display({A,B});

Plate 3. Photograph of E. magnificum from Crow[2009].

Plate 4. Shell with spiral ribs; same growth parameters as Plate 8. Body whorl interior
plotted separately.

> Shell(0.5, 1.7, 0.75*(1 -0.05*(exp(sin(15*s)))), 0.15, 0.15,

0.15, 1, 0, 8*Pi , 300, 90, 60, 0, 0.75,0.75, 1 , (1 -0.18*(

exp(sin(15*s)))), 0.8 + 0.2*sin(5*s), 1, -116, -90,

patchnogrid ):

> A:=S[1]:

> Shell(0.5, 1.7, 0.65*(1 -0.015*( exp(sin(15*s)))), 0.15, 0.15,

0.15, 1, 7*Pi , 8*Pi , 100, 90, 60, 0, 0.75, 0.75, 1, 0.95,

0.93, 0.94, -116, -90, patchnogrid ):

> B:=S[1]:

> display({A,B});
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Plate 5. Cockle shell: z0 = kz = 0.

> Shell(0.001, 0, 0.5, 1, 0, 1.3, ((1-cos(s)) -0.1*(exp(-(3*(s-Pi

)/Pi)^2+(sin(20*(3*(s-Pi)/Pi)))^2))/1), 0, Pi, 400, 200, 20,

-45, 1,1,1, 0.8+0.2*(1-(t/(2*Pi))^(16)), 0.7+0.3* cos(120*(s

/(2*Pi))) ,0.8+0.2*sin(300*t/(2*Pi)), -133, -43, patchnogrid ):

Plate 6. Shell with axial ridges and non-circular aperture. Body whorl interior plotted
separately.

> P:=s->piecewise (s<=Pi, min({2.5,abs((sec((s+Pi/8))))^(1/3)}),

Pi< s, 1);

> Shell(.5, 0.8, 0.35+0.005* exp(exp((cos(4*Pi*t)))), 0.15,

0.175, 0.175, P(s), 0, 6*Pi , 1200, 30, 60, 0, 0.75,0.75,1,

0.8+0.05*( cos(8*Pi*t)), 0.5, 0.5+0.5*(( exp(cos(4*Pi*t)))),

-120, -100, patchnogrid ):

> A:=S[1]:

> Shell(.5, 0.8, 0.33, 0.15, 0.175, 0.175, P(s), 5*Pi, 6*Pi,

200, 30, 60, 0, 0.75 ,0.75 ,0.75 , 0.3, 0.3, 0.6, -120, -100,

patchnogrid ):

> B:=S[1]:

> display({A,B});

Plate 7. Pointy-tipped shell: kr > kz.

>Shell(1,8, 2, 0.2, 0.12, 0.155, 1, 0, 8*Pi, 500, 40, 60, 0,

1,1,1, 0.7+ 0.3*(cos(2*t))^2, 0.7+0.3*( sin(2*s))^2, 0.8,

-116, -90, patchnogrid ):

Plate 8. Shell with linear helix envelope: kr = kz. Shell silhouette is also linear since
ka = kr = kz.

> Shell(0.5, 1.7, 0.75, 0.15, 0.15, 0.15, 1, 0, 8*Pi , 500, 50,

60, 0, 0.75,0.75,1, (sin(5*(s+sin(2*(t*s))))), 0.9, 1, -116,

-90, patchnogrid ):

Plate 9. Flat-topped shell: kr < kz.

> Shell(1, 1, 2, 0.175, 0.2, 0.16, 1, 0, 8*Pi, 500, 40, 60, 0,

0.75,0.75,1, 0.7+0.3* sin(10*s), 0.5+0.5* cos(10*t)*sin(10*s),

0.3+0.7* sin(10*t)*(cos(10*s)), -116, -90, patchnogrid ):

Plate 10. Loose spiral shell: ka < kz. Body whorl interior plotted separately.

> Shell(0.5, 1.7, 0.75, 0.15, 0.15, 0.12, 1, 0, 8*Pi , 500, 50,

60, 0, 1,0.75,1, 1-0.2*trunc(exp(sin(5*s))), 1-0.2*trunc(exp(

sin(3*s))), 1-0.2*trunc(exp(sin(2*s))), -116, -90,

patchnogrid ):

> A:=S[1]:
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> Shell(0.5, 1.7, 0.7, 0.15, 0.15, 0.12, 1, 7.5*Pi, 8*Pi, 500,

50, 60, 0, 1,0.75,1, 0.5, 0.5, 0.5, -116, -90, patchnogrid ):

> B:=S[1]:

> display({A,B});

Plate 11. Clam shell: z0 = kz = 0.

> Shell(0.001, 0, 0.5, 1, 0, 1.3, 1-cos(s), 0, Pi , 100, 50, 20,

-45, 1,1,1, 1-(t/(Pi))^8, (1-(t/Pi)^8)*(1-cos(25*(s+Pi))),

(1-(t/Pi)^8)*(1-sin(50*(t+Pi))), -133, -43, patchnogrid ):

Plate 12. Body whorl engulfing previous ones: ka > kz . Body whorl interior plotted
separately.

> Shell(0.5, 1.7, 0.75, 0.15, 0.15, 0.175, 1, 0, 8*Pi, 500, 50,

60, 0, 1,0.75,0.5, 0.7+ 0.2*(cos(t))^2 -0.4* sin(20*s),

0.8+0.2*( sin(2*s))^2 -0.4* sin(20*s), 0.7-0.4*sin(20*s), -116,

-90, patchnogrid ):

> A:=S[1]:

> Shell(0.5, 1.7, 0.71, 0.15, 0.15, 0.175, 1, 7*Pi, 8*Pi, 500,

50, 60, 0, 1,0.75,0.5, 0.98, 0.9, 0.9, -116, -90, patchnogrid

):

> B:=S[1]:

> display({A,B});
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