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Abstract

The Martin polynomials, introduced by Martin in his 1977 thesis, encode information about the
families of circuits in Eulerian graphs and digraphs. The circuit partition polynomidls, x)
and j(G;x), are simple transformations of the Martin polynomials. We give new identities
for these polynomials, analogous to Tutte’s identity for the chromatic polynomial. Following a
useful expansion of Bollobas [J. Combin. Theory Ser. B 85 (2002) 261-268], these formulas
give combinatorial interpretations for all integer evaluations of the circuit partition and Martin
polynomials. Selected evaluations of the formulas give combinatorial identities that expose
the structure and relations of Eulerian graphs and digraphs. New identities and combinatorial
interpretations for all integer values of the Tutte polynomial of a planar graph along the 4ine
also follow from these results.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In his 1977 thesis [13], Martin recursively defined polynomials that encode information
about the families of circuits in 4-regular Eulerian graphs and digraphs. Las Vergnas found
a closed form for these polynomials and also extended their properties to general Eulerian
graphs and digraphs and further developed their theory (see [10-12]). Bouchet took the
natural step of examining the possible application of these polynomials to matroids,
via isotropic systems (see [4,5]). Both Martin and Las Vergnas were able to establish
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combinatorial interpretations for some small integer evaluations of the polynomials.
Combinatorial interpretations for some derivatives and for evaluations at powers of two
were given in [6-8]. An expansion in [2] then gave formulas for interpretations of all
integer evaluations of these polynomials. Transforms of the Martin polynondieds, x)

and j(G; x), given in [8], and then aptly named circuit partition polynomials in [1],
facilitate these computations. For the oriented and unoriented (respectively) versions of
the Martin polynomial, these transforms are:

(1) J(G;x)=xM(G;x+2) and j(G;x)=xm(G;x+1).

In the current paper, a simple combinatorial proof is given that

J(Gix+y)=Y_J(Gla; x)J(Glac; y),

where the sum is over all subsetof the edge sek (G) such that the rqstrictiorG|A and

G|ac of G to A and toA€ are both Eulerian. A similar proof holds fgKG; x). Recall that
Tutte’s identity for the chromatic polynomial B(G; x + y) =Y P(G|a,x) P(G|ac, y),
where the sum is over all subsetsof the vertex se? (G). The similarity between the
formulas is not coincidental, and in fact the proof in the current paper is an adaptation
of the proof for the chromatic identity. Like the chromatic polynomi&lG; x) is a one-
variable specialization of a more general polynomial (see [8]).

Because combinatorial interpretations are known for various evaluatiod$fx)
andj(é; x), manipulations of the identities above reveal relationships in the structures of
Eulerian graphs and digraphs. Furthermore, Martin showed tldatsfa planar graph, and
if a particular orientation is given to its medial gragh,,, then the Martin polynomial of
G, is equal to the Tutte polynomial @f, with y = x (see [10] for further generalizations
as well). This led to surprising relations between valuations of the Tutte polynomial and
anticircuits in medial graphs in [11,14]. Further interpretations for the Tutte polynomial of
a planar graph, and some of its derivatives, along the jirex were found in [7]. The
Tutte—Martin relation means that the identities for the circuit partition polynomials in the
current paper immediately give new information about the Tutte polynomial of a planar
graph.

The following conventions are used throughout this paper. Graphs may have loops and
multiple edges. A graph is said to be Eulerian if all its vertices have even degrees, but
connectedness is not required. An oriented graphijgraph, has a direction assigned to
each edge, and will be denoted By An orientation of a graph is called Eulerian if the
in-degree equals the out-degree at every vertex, and again connectedness is not required.

Following [3], a trail may revisit a vertex, but not retrace an edge. A circuit is a closed
trail, and a cycle is a circuit that does not revisit any vertices. Trails, circuits and cycles in
a digraph are similarly defined, except that the edges must be consistently oriented as the
trail is traversed. Aranticircuit in a digraph is a closed trail so that the directions of the
edges alternate as the trail passes through any vertex of degree greater than 2. However,
direction is not required to change when passing through a vertex of degree 2, since this in
factis not possible in a graph with an Eulerian orientation. Note that in a 4-regular Eulerian
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digraph, the set of anticircuits can be found by pairing the two incoming edges and the two
outgoing edges at each vertex.

We will count the number of connected components in two different ways. When
evaluating the circuit partition polynomials, we will usually use the nunti&r) of
connected components 6fwhich are notisolated vertices. Similark;(,é) does not count
isolated vertices. However, when evaluating the Tutte polynomial, we will use the number
¢(G) of all components, including isolated vertices.

When there is no danger of confusiofwill be written for G| 4, and in the oriented
caseA will be written for G| ;.

2. Thecircuit partition polynomialsand principal results

Definition 2.1. An Eulerian graph state of a graphG is the result of replacing eac:2
valent vertexs of G with n 2-valent vertices joining pairs of edges originally adjacentto
Note that a Eulerian graph state is a disjoint union of cycles.

An Eulerian graph state of an Eulerian digra@hs defined similarly, except here each
incoming edge must be paired with an outgoing edge.
For example, see Fig. 1.

Definition 2.2. The circuit partition polynomial J(G; x) of an Eulerian graphG can

be given byJ(G; x) = Zk}O fi(G)x*, where f;(G) is the number of Eulerian graph
states ofG with k components, definingo(G) to be 1 if G has no edges, and 0
otherwise. The circuit partition polynomial is defined similarly for Eulerian digraphs as
J(G: %) = Y450 fi(G)x*, where fi(G) is the number of Eulerian graph statestbiwith

k components. (See [7] for other forms.)

For example, in Fig. 1, sincé has 6 states with 1 component, 8 states with 2 compo-
nents, and 2 states with 3 components, its polynomia(@; x) = 6x + 8x% + 2x3. Both
J(G; x) andj (G; x) map non-Eulerian (di)graphs to zero.

Theorem 2.3. J(G;x +y) = > J(A; x)J (A y), where the sum is over_all subsets
A C E(G) such that G restricted to both A and A€ is Eulerian. Also, j(G;x + y) =

@

Fig. 1. (a) An Eulerian digrapﬁ'; (b) An Eulerian graph state @ with 2 components.



J.A. Ellis-Monaghan / Advances in Applied Mathematics 32 (2004) 188-197 191

Zj(g; x)j(j“; y), where the sumis over all subsets A € E(G) such that G restricted to
both A and A€ isan Eulerian digraph.

At the expense of some algebraic machinery, this follows from the factifa@t x)
is a Hopf map from a Hopf algebra of graphs to the binomial bialgebra, and hence
J(G;1ex+x®1) =) J(A; x)®J(AS; x)—see [7], proof of Theorem 5.2. Substituting
x for 1® x andy for x ® 1 gives the result. As an alternative, we provide a simple
combinatorial proof below, which mimics the coloring proof for the chromatic polynomial.
The proof uses the following somewhat contrived definition.

Definition 2.4. An n-circuit coloring of an Eulerian graplk¥ is a one-covering of the edges
of G by circuits with each circuit assigned one of theolors (colors may be repeated, and
not all colors must be used).

Thus for example, two different Eulerian circuits of a connected g@photh colored
green, would constitute different 1-circuit colorings@f since although the color on all
the edges is the same, the circuits are different.

Lemma 2.5. J(G; n) = the number of n-circuit coloringsof G.

Proof. Since f;(G) is the number of one-coverings & by k circuits, andrn® is the
number of ways to color the circuits withn colors when repeats are allowed, it follows
thatJ(G;n) = 21@0 fx(G)nk is the number ofi-circuit colorings ofG. O

Proof of Theorem 2.3. Given an(m + n)-circuit coloring of G, let A be the edges
colored by the firstn colors. Then ar(m + n)-circuit coloring of G decomposes into
an m-circuit coloring of A and ann-circuit coloring of A°. Note that bothA and A€

are necessarily Eulerian. Thus, for any two nonnegative numbensdr, it follows that
J(G;m+n)=>_J(A; m)J (A n), where the sum is over all subsets_ E(G) such that

G restricted to bottd andA°€ is Eulerian. Since the expressions involve finite polynomials,
this establishes the result for indeterminatesnd y. The analogous result clearly holds
for j(G; x) in the oriented case.O

Corollary 2.6. Let n be any positive integer. Then J(G; w) = Y [1'_; J(A;; w;), where
the sumis over all ordered partitions (Aq, ..., A,) of E(G) so that G restricted to A; is
an Eulerian graph for all i, and where " ; w; = w.

Proof. This follows easily by induction on from Theorem 2.3, which gives the case when
n=2. O

Again, the analogous result holds in the oriented case, namely]ht(aiw)
Z]‘[ 1](A,, w;), where the sum is over ordered partltlo(m;l, ..., Ap) of E(G) SO
thatG restricted tod; is an Eulerian digraph for all, and where)_!_; w; = w.

A direct proof of the following especially useful special case can be found in [2].
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Corollary 2.7. Let n be any positive integer. Then J(G; nx) = > [[/_; J(A;; x), where
the sumis over all ordered partitions (A1, ..., A,;) of E(G) so that G restricted to A; is
an Eulerian graph for all ;.

Proof. This follows by lettingw; =x foralli. O

Again, S|m|IarIy,J (G nx)=> [1i1Jj (A,, x) where the sum is over ordered partitions
(Al, .. An) of E(G) so thatG restricted toA is an Eulerian digraph for all

3. Applicationsto the circuit partition polynomials

Theorem 2.3 and its corollaries can now be used to give a variety of interpretations for
integer values of the circuit partition polynomials. As noted in [2], this extends the results
of [8] from powers of 2 to all integers.

First we give a few definitions to simplify later notation.

Let A, (G) ={(A1,..., Ay}, where(Aq, ..., A,) is an ordered partition of (G) into
n subsets such that restricted toA; is Eulerian for all;. An(é) is similarly defined.

Let D,(G)={(Ds, ..., Dy)},where(D1, ..., D,) is an ordered partition of (G) into
n subsets such thag restricted toD; is 2-regular for alli. D,(G) is similarly defined,
with the additional restriction that thé,» 's be consistently oriented.

Let Eul(G) denote the number of Eulerian orientationg&fi.e., the number of ways
to orient the edges aoff so that the result is an Eulerian digraph. kgtG) denote the
number of Eulerian orientations of with exactlyk anticircuits. Following Bollobas [2],
define theanticircuit generating function asa(G; x) =), ar(G)x*.

If GorGis edge-colored, monochromatic vertex is a vertex with all its incident edges
of the same color. Whemis odd, leth!!=n-(n —2)-...-3- 1.

Derivations of formulas (2) through (6) below, achieved by using Corollary 2.7 with
known evaluations, can be foundin [2]. They are listed here without proof for completeness
and for later applications.

@  j(G:i-m= 3 (-2 whereg(D,(G)) = Y k(D).
D (G) i=1

3) J(G:—2)= ) (=P whereg(D,(G)) Zk(D)
D4(G)

@ JGm=>Y T[] I (deg, —1).

An(G)i= lveV(A )

(5) J(G;2n) = Z HEuI(A) ]_[ < i (v))

An(G)i=1 veV(A)
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(6) If G is 4n-regular, withm vertices, then

J(G; —an) = (1™ Y []ai -

An(G)i=1

Results (7) and (8) below also follow Corollary 2.7, and can be found in [7].

() JjGin)= Z]‘[ I1 (
A, i=lvev(A;)
(8) A special case of (7). If maxdeg) = 4, thenj(G;n) = 3. 2", where the sum
is over all edge colorings of G with n colors so that each (possibly empty) set
of monochromatic edges forms an Eulerian digraph, ar{d) is the number of
monochromatic vertices in the colorig

degA (U))

Mimicking Bollobas’ proof in [2] of result (6) and using the evaluations (9) and (10)
below (see [12] for (9) and (10) in terms of the original Martin polynomial) give result (11).

9) J(é r—d)y=0forr=1,....d if maxdegG) = 2d > 2.
(10) If G has maxdeg- 4, thenJ(G -2) = (=D"(— 2)"(G)+C wheren is the number
of vertices of degree 4 i, andh(G) is the number of anticircuits i, andC is
the number of components 6f with max deg= 2. This minor generalization of the
result in [13] is achieved by the slight broadening of the definition of an anticircuit
combined with the multiplicative property of the circuit partition polynomial.
(12) If Gis 4n-regular, withm vertices, then

j(Gi—=an) = (=™ ]i[(—z)h“‘f).

An(G)i=1

Various combinations of these formulas reveal relations in the structures of Eulerian
(di)graphs. For example, Lemma 2.5 combined with formula (4) means that the number of
n-circuit colorings of a graplis is equal toy ) [Ti=1 [Tvev(a,) (degy, (v) — D!

Formulas (4) and (5) combined together give that

> 12_n[ [] (deg,)-1)1=>" ]_[EuI(A) I1 <degA (U)),

A2, (G)i=1veV(A)) Ay (G)i=1 veV(A;)

etc. While these are the result of rather facile algebraic manipulations, they reveal relations
within Eulerian graphs that may merit further study.

Theorem 2.3 can also be used to explore relationships in Eulerian graphs, as in (13)
below. This requires a result that can be found in [12]:
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(12) j(é;l):]‘[(d‘;g”)!.

v

Also note that by (9) above, if max de{g) = 2d > 4, then the alternating sum of
the numbers of Euleriak-partitions,j (G; —1) =Y, _, fi(G)(—=1)K, is zero. If however
maxdedG) = 2, so thatG is a disjoint union of cycles, thef(G; —1) = (—1)¥(©).

From Theorem 2.3 it then follows that

0=j(G:0)=j(G:—1+1) =) j(A: —1)J(A%1).

But, as noted abovej(A; —1) = 0 unless maxdegl) = 2, in which casej(A; —1) =
(—=D*  This, combined with identity (12) gives (13):

(13) For any digrap!@, it follows that

S0 ] (LQIZ"(”))!:O,

veV (D)

where the sum is over all subsddsof E(f}) such thae restricted taD is a 2-regular
Eulerian digraph.

These few examples illustrate, but certainly do not exhaust, the types of relations for
Eulerian (di)graphs attainable by manipulating the preceding results.

4. Applicationsto the Tutte polynomial

The preceding formulas now have direct applications to the Tutte polynomial of a planar
graph along the lingy = x. In [13,14], Martin found a relationship between the Tutte
polynomial of a connected planar graph and the Martin polynomial of its medial graph
when given a specific orientation. This relation was further explored by Las Vergnas in
[9-11]. Recall that themedial graph of a connected planar graph is constructed by
putting a vertex on each edge 6fand drawing edges around the face<GofThe faces
of this medial graph are colored black or white, depending on whether they contain or do
not contain, respectively, a vertex of the original graphrhis face-two-colors the medial
graph. The edges of the medial graph are then directed so that the black face is on the left.
For example, see Fig. 2.

Hereafter, the phrase “directed medial graph” always refers to the medial graph with
this specific orientation, which will be denoted By, .

Let G be a connected planar graph, andJgt be its directed medial graph. The relation
between the Martin polynomial and Tutte polynomial is:

(14) m(am;x)=t(G;x,x).
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(a) (b)

Fig. 2. (a) A planar grapli; (b) G, with the vertex faces colored black, oriented so that black faces are to the
left of each edge.

Combining this with the transformation identity (1) and the fact that the Tutte and circuit
partition polynomials are multiplicative on disjoint unions of graphs gives the following
relation, forG not necessarily connected:

(15) j(Gm; x) =x9t(G; x + 1, x + 1), wherec(G) is the number of components 6f,
counting isolated vertices. For this to be consistent, defitte,; x) =x if G is a
graph consisting of a single vertex and no edges.

The evaluations of the circuit partition polynomials in Section 3 now give combinatorial
interpretations for all integer values of the Tutte polynomial of a planar graph along the line
y=x.

Identity 4.1. Let G be a planar graph with oriented medial grzfm;. Then:

(16) (= D1(G;1 — n,1 = n) = j(Gus—n) = L G, (~DFP ), where
2(Dn(Gm)) = Yi_1 k(Dy), and

17) n“Ot(G; 1+ n, 1+ n) = j(Gmin) = Y. 2", where the sum is over all edge
coloringsc of G, with n colors so that each (possibly empty) set of monochromatic
edges forms an Eulerian digraph, and wheie) is the number of monochromatic
vertices in the coloring.

Proof. Identity (16) follows from relation (15) combined with (2) in Section 3. Sie
is 4-regular, (17) follows from relation (15) combined with (7) in Section 81

Theorem 2.3 and Corollary 2.6 also give the following three identities for the Tutte
polynomial of a planar graph.

Identity 4.2. Let G be a planar graph, and 6%, be its oriented medial graph. Then

-

@+ (Gix+y+Lax+y+D =Y j(Aix)j(A%y),
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where the sum is over all subse&g E(ém) such thaf}m restricted to bothA and A€ is
an Eulerian digraph.

Proof. This follows directly from Theorem 2.3 and relation (15)a

Identity 4.3. Let G be a planar graph and 6%, be its oriented medial graph. Then

Gy —DOtGixtyxty= Y DD j(Anx)j(Azy),
(D.A1.A7)

where the sum is over all partltloms) Al, Az) of E(Gm) such tha’Gm restricted to each
of D Al, andAz is an Eulerian digraph, and furthermo@m restricted taD is 2- regular.

Proof. Theorem 2.3 and relation (15) give that

E+y—DPtGix+y,x+n= Y j(Aux)i(Azy)i(As-1).
(A1. A2, As3)

However, by (9),j(,33, -1)=0 unlessﬁg is 2-regular, and in this casﬁ(ﬁg, -1 =
(_1)1<(A3)_ O

Identity 4.4. Let G be a planar graph, and ét,, be its oriented medial graph. Then
(w)°(G)t(G w+lw+tl)= 3 H A wy), where the sum is over ordered partitions
(Al, n) of E(Gm) o) thatGm restricted toA is an Eulerian digraph for all, and
WhereZ,:l w =w.

Proof. This follows directly from Corollary 2.6 and relation (15)0

The identities and formulas of this paper might be generalized to matroids. The work
of Bouchet in [4,5] lays a foundation for extending results in this direction. Furthermore,
although the results for the Tutte polynomial given here apply to planar graphs, it may be
possible to extend them to certain classes of nonplanar graphs. For example, in [9], Las
Vergnas explores Tutte—Martin relations in graphs imbedded in surfaces. The evaluations
given here were for integer values, and resulted from being able to use Theorem 2.3 to build
upon a few known small integer evaluations of the circuit partition polynomials. Because
they could similarly be expanded to a whole body of new results, any combinatorial
interpretations for any noninteger values of the circuit partition polynomials would be most
welcome.
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