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Abstract

The Martin polynomials, introduced by Martin in his 1977 thesis, encode information abo
families of circuits in Eulerian graphs and digraphs. The circuit partition polynomials,J (G;x)

and j ( �G;x), are simple transformations of the Martin polynomials. We give new ident
for these polynomials, analogous to Tutte’s identity for the chromatic polynomial. Followi
useful expansion of Bollobás [J. Combin. Theory Ser. B 85 (2002) 261–268], these for
give combinatorial interpretations for all integer evaluations of the circuit partition and M
polynomials. Selected evaluations of the formulas give combinatorial identities that e
the structure and relations of Eulerian graphs and digraphs. New identities and combin
interpretations for all integer values of the Tutte polynomial of a planar graph along the liney = x

also follow from these results.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In his 1977 thesis [13], Martin recursively defined polynomials that encode inform
about the families of circuits in 4-regular Eulerian graphs and digraphs. Las Vergnas
a closed form for these polynomials and also extended their properties to general E
graphs and digraphs and further developed their theory (see [10–12]). Bouchet to
natural step of examining the possible application of these polynomials to mat
via isotropic systems (see [4,5]). Both Martin and Las Vergnas were able to est
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combinatorial interpretations for some small integer evaluations of the polynom
Combinatorial interpretations for some derivatives and for evaluations at powers o
were given in [6–8]. An expansion in [2] then gave formulas for interpretations o
integer evaluations of these polynomials. Transforms of the Martin polynomials,J (G;x)

and j ( �G;x), given in [8], and then aptly named circuit partition polynomials in [
facilitate these computations. For the oriented and unoriented (respectively) versi
the Martin polynomial, these transforms are:

(1) J (G;x) = xM(G;x + 2) and j
( �G;x

) = xm
( �G;x + 1

)
.

In the current paper, a simple combinatorial proof is given that

J (G;x + y) =
∑

J (G|A;x)J (G|Ac;y),

where the sum is over all subsetsA of the edge setE(G) such that the restrictionsG|A and
G|Ac of G to A and toAc are both Eulerian. A similar proof holds forj ( �G;x). Recall that
Tutte’s identity for the chromatic polynomial isP(G;x + y) = ∑

P(G|A,x)P (G|Ac , y),
where the sum is over all subsetsA of the vertex setV (G). The similarity between th
formulas is not coincidental, and in fact the proof in the current paper is an adap
of the proof for the chromatic identity. Like the chromatic polynomial,J (G;x) is a one-
variable specialization of a more general polynomial (see [8]).

Because combinatorial interpretations are known for various evaluations ofJ (G;x)

andj ( �G;x), manipulations of the identities above reveal relationships in the structur
Eulerian graphs and digraphs. Furthermore, Martin showed that ifG is a planar graph, an
if a particular orientation is given to its medial graph,Gm, then the Martin polynomial o
Gm is equal to the Tutte polynomial ofG, with y = x (see [10] for further generalization
as well). This led to surprising relations between valuations of the Tutte polynomia
anticircuits in medial graphs in [11,14]. Further interpretations for the Tutte polynom
a planar graph, and some of its derivatives, along the liney = x were found in [7]. The
Tutte–Martin relation means that the identities for the circuit partition polynomials in
current paper immediately give new information about the Tutte polynomial of a p
graph.

The following conventions are used throughout this paper. Graphs may have loo
multiple edges. A graph is said to be Eulerian if all its vertices have even degree
connectedness is not required. An oriented graph, ordigraph, has a direction assigned
each edge, and will be denoted by�G. An orientation of a graph is called Eulerian if th
in-degree equals the out-degree at every vertex, and again connectedness is not re

Following [3], a trail may revisit a vertex, but not retrace an edge. A circuit is a cl
trail, and a cycle is a circuit that does not revisit any vertices. Trails, circuits and cyc
a digraph are similarly defined, except that the edges must be consistently oriented
trail is traversed. Ananticircuit in a digraph is a closed trail so that the directions of
edges alternate as the trail passes through any vertex of degree greater than 2. H
direction is not required to change when passing through a vertex of degree 2, since
fact is not possible in a graph with an Eulerian orientation. Note that in a 4-regular Eu
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digraph, the set of anticircuits can be found by pairing the two incoming edges and th
outgoing edges at each vertex.

We will count the number of connected components in two different ways. W
evaluating the circuit partition polynomials, we will usually use the numberk(G) of
connected components ofG which are not isolated vertices. Similarly,k( �G) does not coun
isolated vertices. However, when evaluating the Tutte polynomial, we will use the nu
c(G) of all components, including isolated vertices.

When there is no danger of confusion,A will be written for G|A, and in the oriented
case�A will be written for �G| �A.

2. The circuit partition polynomials and principal results

Definition 2.1. An Eulerian graph state of a graphG is the result of replacing each 2n-
valent vertexv of G with n 2-valent vertices joining pairs of edges originally adjacent tv.
Note that a Eulerian graph state is a disjoint union of cycles.

An Eulerian graph state of an Eulerian digraph�G is defined similarly, except here ea
incoming edge must be paired with an outgoing edge.

For example, see Fig. 1.

Definition 2.2. The circuit partition polynomial J (G;x) of an Eulerian graphG can
be given byJ (G;x) = ∑

k�0 fk(G)xk, wherefk(G) is the number of Eulerian grap
states ofG with k components, definingf0(G) to be 1 if G has no edges, and
otherwise. The circuit partition polynomial is defined similarly for Eulerian digraph
j ( �G;x) = ∑

k�0 fk( �G)xk, wherefk( �G) is the number of Eulerian graph states of�G with
k components. (See [7] for other forms.)

For example, in Fig. 1, since�G has 6 states with 1 component, 8 states with 2 com
nents, and 2 states with 3 components, its polynomial isj ( �G;x) = 6x + 8x2 + 2x3. Both
J (G;x) andj ( �G;x) map non-Eulerian (di)graphs to zero.

Theorem 2.3. J (G;x + y) = ∑
J (A;x)J (Ac;y), where the sum is over all subsets

A ⊆ E(G) such that G restricted to both A and Ac is Eulerian. Also, j ( �G;x + y) =

(a) (b)

Fig. 1. (a) An Eulerian digraph�G; (b) An Eulerian graph state of�G with 2 components.
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j ( �A;x)j ( �Ac;y), where the sum is over all subsets �A ⊆ E( �G) such that �G restricted to

both �A and �Ac is an Eulerian digraph.

At the expense of some algebraic machinery, this follows from the fact thatJ (G;x)

is a Hopf map from a Hopf algebra of graphs to the binomial bialgebra, and h
J (G;1⊗x+x ⊗1) = ∑

J (A;x)⊗J (Ac;x)—see [7], proof of Theorem 5.2. Substitutin
x for 1 ⊗ x and y for x ⊗ 1 gives the result. As an alternative, we provide a sim
combinatorial proof below, which mimics the coloring proof for the chromatic polynom
The proof uses the following somewhat contrived definition.

Definition 2.4. An n-circuit coloring of an Eulerian graphG is a one-covering of the edge
of G by circuits with each circuit assigned one of then colors (colors may be repeated, a
not all colors must be used).

Thus for example, two different Eulerian circuits of a connected graphG, both colored
green, would constitute different 1-circuit colorings ofG, since although the color on a
the edges is the same, the circuits are different.

Lemma 2.5. J (G;n) = the number of n-circuit colorings of G.

Proof. Sincefk(G) is the number of one-coverings ofG by k circuits, andnk is the
number of ways to color thek circuits withn colors when repeats are allowed, it follow
thatJ (G;n) = ∑

k�0 fk(G)nk is the number ofn-circuit colorings ofG. ✷
Proof of Theorem 2.3. Given an (m + n)-circuit coloring of G, let A be the edge
colored by the firstm colors. Then an(m + n)-circuit coloring of G decomposes into
an m-circuit coloring of A and ann-circuit coloring of Ac. Note that bothA and Ac

are necessarily Eulerian. Thus, for any two nonnegative numbersm andn, it follows that
J (G;m+n) = ∑

J (A;m)J (Ac;n), where the sum is over all subsetsA ⊆ E(G) such that
G restricted to bothA andAc is Eulerian. Since the expressions involve finite polynomi
this establishes the result for indeterminatesx andy. The analogous result clearly hol
for j ( �G;x) in the oriented case.✷
Corollary 2.6. Let n be any positive integer. Then J (G;w) = ∑∏n

i=1 J (Ai;wi), where
the sum is over all ordered partitions (A1, . . . ,An) of E(G) so that G restricted to Ai is
an Eulerian graph for all i, and where

∑n
i=1 wi = w.

Proof. This follows easily by induction onn from Theorem 2.3, which gives the case wh
n = 2. ✷

Again, the analogous result holds in the oriented case, namely thatj ( �G;w) =∑∏n
i=1 j ( �Ai;wi), where the sum is over ordered partitions( �A1, . . . , �An) of E( �G) so

that �G restricted to�Ai is an Eulerian digraph for alli, and where
∑n

i=1 wi = w.
A direct proof of the following especially useful special case can be found in [2].
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Corollary 2.7. Let n be any positive integer. Then J (G;nx) = ∑∏n
i=1 J (Ai;x), where

the sum is over all ordered partitions (A1, . . . ,An) of E(G) so that G restricted to Ai is
an Eulerian graph for all i .

Proof. This follows by lettingwi = x for all i. ✷
Again, similarly,j ( �G;nx) = ∑∏n

i=1 j ( �Ai;x) where the sum is over ordered partitio
( �A1, . . . , �An) of E( �G) so that �G restricted to�Ai is an Eulerian digraph for alli.

3. Applications to the circuit partition polynomials

Theorem 2.3 and its corollaries can now be used to give a variety of interpretatio
integer values of the circuit partition polynomials. As noted in [2], this extends the re
of [8] from powers of 2 to all integers.

First we give a few definitions to simplify later notation.
Let An(G) = {(A1, . . . ,An)}, where(A1, . . . ,An) is an ordered partition ofE(G) into

n subsets such thatG restricted toAi is Eulerian for alli. �An( �G) is similarly defined.
Let Dn(G) = {(D1, . . . ,Dn)}, where(D1, . . . ,Dn) is an ordered partition ofE(G) into

n subsets such thatG restricted toDi is 2-regular for alli. �Dn( �G) is similarly defined,
with the additional restriction that the�Di ’s be consistently oriented.

Let Eul(G) denote the number of Eulerian orientations ofG, i.e., the number of way
to orient the edges ofG so that the result is an Eulerian digraph. Letak(G) denote the
number of Eulerian orientations ofG with exactlyk anticircuits. Following Bollobás [2]
define theanticircuit generating function asa(G;x) = ∑

k ak(G)xk.
If G or �G is edge-colored, amonochromatic vertex is a vertex with all its incident edge

of the same color. Whenn is odd, letn!! = n · (n − 2) · . . . · 3 · 1.
Derivations of formulas (2) through (6) below, achieved by using Corollary 2.7

known evaluations, can be found in [2]. They are listed here without proof for complet
and for later applications.

(2) j ( �G;−n) =
∑
�Dn( �G)

(−1)g( �Dn( �G)), whereg
( �Dn( �G)

) =
n∑

i=1

k
( �Di

)
.

(3) J (G;−2n) =
∑

Dn(G)

(−2)g(Dn(G)), whereg
(
Dn(G)

) =
n∑

i=1

k(Di).

(4) J (G;n) =
∑

An(G)

n∏
i=1

∏
v∈V (Ai)

(
degAi

(v) − 1
)!!.

(5) J (G;2n) =
∑ n∏

Eul(Ai)
∏ (

degAi
(v)

2

)
!.
An(G) i=1 v∈V (Ai)
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(6) If G is 4n-regular, withm vertices, then

J (G;−4n) = (−1)mn
∑

An(G)

n∏
i=1

a(Ai;−2).

Results (7) and (8) below also follow Corollary 2.7, and can be found in [7].

(7) j ( �G;n) =
∑
�An

n∏
i=1

∏
v∈V ( �Ai)

(deg�Ai
(v)

2

)
!.

(8) A special case of (7). If maxdeg( �G) = 4, thenj ( �G;n) = ∑
2m(c), where the sum

is over all edge coloringsc of �G with n colors so that each (possibly empty) s
of monochromatic edges forms an Eulerian digraph, andm(c) is the number of
monochromatic vertices in the coloringc.

Mimicking Bollobás’ proof in [2] of result (6) and using the evaluations (9) and (
below (see [12] for (9) and (10) in terms of the original Martin polynomial) give result (

(9) j ( �G; r − d) = 0 for r = 1, . . . , d if maxdeg( �G) = 2d � 2.
(10) If �G has maxdeg= 4, thenj ( �G;−2) = (−1)n(−2)h( �G)+C , wheren is the number

of vertices of degree 4 in�G, andh( �G) is the number of anticircuits in�G, andC is
the number of components of�G with maxdeg= 2. This minor generalization of th
result in [13] is achieved by the slight broadening of the definition of an antici
combined with the multiplicative property of the circuit partition polynomial.

(11) If �G is 4n-regular, withm vertices, then

j
( �G;−4n

) = (−1)mn
∑
�An( �G)

n∏
i=1

(−2)h( �Ai).

Various combinations of these formulas reveal relations in the structures of Eu
(di)graphs. For example, Lemma 2.5 combined with formula (4) means that the num
n-circuit colorings of a graphG is equal to

∑
An(G)

∏n
i=1

∏
v∈V (Ai)

(degAi
(v) − 1)!!.

Formulas (4) and (5) combined together give that

∑
A2n(G)

2n∏
i=1

∏
v∈V (Ai)

(
degAi

(v) − 1
)!! = ∑

An(G)

n∏
i=1

Eul(Ai)
∏

v∈V (Ai)

(
degAi

(v)

2

)
!,

etc. While these are the result of rather facile algebraic manipulations, they reveal re
within Eulerian graphs that may merit further study.

Theorem 2.3 can also be used to explore relationships in Eulerian graphs, as
below. This requires a result that can be found in [12]:
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(12) j
( �G;1

) =
∏
v

(
degv

2

)
!.

Also note that by (9) above, if maxdeg( �G) = 2d � 4, then the alternating sum o
the numbers of Euleriank-partitions,j ( �G;−1) = ∑

k=0 fk( �G)(−1)k, is zero. If however

maxdeg( �G) = 2, so that�G is a disjoint union of cycles, thenj ( �G;−1) = (−1)k( �G).
From Theorem 2.3 it then follows that

0= j
( �G;0

) = j
( �G;−1+ 1

) =
∑

j
( �A;−1

)
J
( �Ac;1

)
.

But, as noted above,j ( �A;−1) = 0 unless maxdeg( �A) = 2, in which casej ( �A;−1) =
(−1)k( �A). This, combined with identity (12) gives (13):

(13) For any digraph�G, it follows that

∑
(−1)k( �D)

∏
v∈V ( �Dc)

(
deg�Dc(v)

2

)
! = 0,

where the sum is over all subsets�D of E( �G) such that�G restricted to�D is a 2-regular
Eulerian digraph.

These few examples illustrate, but certainly do not exhaust, the types of relatio
Eulerian (di)graphs attainable by manipulating the preceding results.

4. Applications to the Tutte polynomial

The preceding formulas now have direct applications to the Tutte polynomial of a p
graph along the liney = x. In [13,14], Martin found a relationship between the Tu
polynomial of a connected planar graph and the Martin polynomial of its medial g
when given a specific orientation. This relation was further explored by Las Vergn
[9–11]. Recall that themedial graph of a connected planar graphG is constructed by
putting a vertex on each edge ofG and drawing edges around the faces ofG. The faces
of this medial graph are colored black or white, depending on whether they contain
not contain, respectively, a vertex of the original graphG. This face-two-colors the media
graph. The edges of the medial graph are then directed so that the black face is on
For example, see Fig. 2.

Hereafter, the phrase “directed medial graph” always refers to the medial graph
this specific orientation, which will be denoted by�Gm.

LetG be a connected planar graph, and let�Gm be its directed medial graph. The relati
between the Martin polynomial and Tutte polynomial is:

(14) m
( �Gm;x

) = t (G;x, x).



J.A. Ellis-Monaghan / Advances in Applied Mathematics 32 (2004) 188–197 195

o the

ircuit
ing

orial
e line

e
atic
ic

utte
(a) (b)

Fig. 2. (a) A planar graphG; (b) Gm with the vertex faces colored black, oriented so that black faces are t
left of each edge.

Combining this with the transformation identity (1) and the fact that the Tutte and c
partition polynomials are multiplicative on disjoint unions of graphs gives the follow
relation, forG not necessarily connected:

(15) j ( �Gm;x) = xc(G)t (G;x + 1, x + 1), wherec(G) is the number of components ofG,
counting isolated vertices. For this to be consistent, definej ( �Gm;x) = x if G is a
graph consisting of a single vertex and no edges.

The evaluations of the circuit partition polynomials in Section 3 now give combinat
interpretations for all integer values of the Tutte polynomial of a planar graph along th
y = x.

Identity 4.1. Let G be a planar graph with oriented medial graph�Gm. Then:

(16) (−n)c(G)t (G;1 − n,1 − n) = j ( �Gm;−n) = ∑
�Dn( �Gm)(−1)g( �Dn( �Gm)), where

g( �Dn( �Gm)) = ∑n
i=1 k( �Di), and

(17) nc(G)t (G;1 + n,1 + n) = j ( �Gm;n) = ∑
2m(c), where the sum is over all edg

coloringsc of �Gm with n colors so that each (possibly empty) set of monochrom
edges forms an Eulerian digraph, and wherem(c) is the number of monochromat
vertices in the coloringc.

Proof. Identity (16) follows from relation (15) combined with (2) in Section 3. Since�Gm

is 4-regular, (17) follows from relation (15) combined with (7) in Section 3.✷
Theorem 2.3 and Corollary 2.6 also give the following three identities for the T

polynomial of a planar graph.

Identity 4.2. Let G be a planar graph, and let�Gm be its oriented medial graph. Then

(x + y)c(G)t (G;x + y + 1, x + y + 1) =
∑

j
( �A;x

)
j
( �Ac;y

)
,
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where the sum is over all subsets�A ⊆ E( �Gm) such that�Gm restricted to both�A and �Ac is
an Eulerian digraph.

Proof. This follows directly from Theorem 2.3 and relation (15).✷
Identity 4.3. Let G be a planar graph and let�Gm be its oriented medial graph. Then

(x + y − 1)c(G)t (G;x + y, x + y) =
∑

( �D, �A1, �A2)

(−1)k( �D)j
( �A1;x

)
j
( �A2;y

)
,

where the sum is over all partitions( �D, �A1, �A2) of E( �Gm) such that�Gm restricted to each
of �D, �A1, and �A2 is an Eulerian digraph, and furthermore,�Gm restricted to�D is 2-regular.

Proof. Theorem 2.3 and relation (15) give that

(x + y − 1)c(G)t (G;x + y, x + y) =
∑

( �A1, �A2, �A3)

j
( �A1;x

)
j
( �A2;y

)
j
( �A3;−1

)
.

However, by (9),j ( �A3,−1) = 0 unless �A3 is 2-regular, and in this casej ( �A3,−1) =
(−1)k( �A3). ✷
Identity 4.4. Let G be a planar graph, and let�Gm be its oriented medial graph. The
(w)c(G)t (G;w + 1,w + 1) = ∑∏n

i=1 j ( �Ai;wi), where the sum is over ordered partitio
( �A1, . . . , �An) of E( �Gm) so that �Gm restricted to �Ai is an Eulerian digraph for alli, and
where

∑n
i=1 wi = w.

Proof. This follows directly from Corollary 2.6 and relation (15).✷
The identities and formulas of this paper might be generalized to matroids. The

of Bouchet in [4,5] lays a foundation for extending results in this direction. Furtherm
although the results for the Tutte polynomial given here apply to planar graphs, it m
possible to extend them to certain classes of nonplanar graphs. For example, in [
Vergnas explores Tutte–Martin relations in graphs imbedded in surfaces. The evalu
given here were for integer values, and resulted from being able to use Theorem 2.3 t
upon a few known small integer evaluations of the circuit partition polynomials. Bec
they could similarly be expanded to a whole body of new results, any combina
interpretations for any noninteger values of the circuit partition polynomials would be
welcome.
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