16.6

I. A parametric surface is a vector valued function

\[\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle \]
II The tangent plane to \(\vec{r}(u, v) \)

has normal \(\vec{r}_u \times \vec{r}_v \)

so for example, the tangent plane
to \(\vec{r}(u, v) = \langle u^2, v^2, u-v \rangle \) at

\((1,4, -3) \)

so \(u = \frac{5}{2}, \ v = \frac{1}{2} \)

but \(h \cdot v = -\frac{3}{2} \) so

\(h = -1, \ v = \frac{3}{2} \)
has normal using

\[\overrightarrow{r_u} = \langle 2u, 0, 1 \rangle \rightarrow \langle -2, 0, 1 \rangle \]

\[\overrightarrow{r_v} = \langle 0, 2v, -1 \rangle \rightarrow \langle 0, 4, -1 \rangle \]

So \(n = \begin{vmatrix} i & j & k \\ -2 & 0 & 1 \\ 0 & 4 & -1 \end{vmatrix} = \langle -4, -2, -8 \rangle \)

or \(\langle 2, 1, 4 \rangle \) reduced
so the equation of the tangent plane
through \((1, 4, -3)\) \perp \((2, 1, 4)\)

is
\[
2(x - 1) + 1(y - 4) + 4(z + 3) = 0
\]
III surface area:

Surface area of \(\tilde{r}(u,v) \) for \(u, v \) in some region \(D \)

is \(\int_{\tilde{r}_u \times \tilde{r}_v} \, dA \)