\[\iiint_E x^2 \, dV \]

where

\[E \]

is bounded by \(z = 0, \ z = y \)

\[x^2 + y^2 = 1 \quad \text{with} \ y \geq 0 \]

from half
\[\iiint x^2 \, dV = \]
\[= \iiint [x^2 \, dz] \, dA \]
\[= \int_0^1 \int_{-\sqrt{2z}}^{\sqrt{2z}} \int_0^y x^2 \, dz \, dy \, dx \]
\[= \frac{1}{2} \int_0^1 y^2 \, dy \]

First do \[x^2 \bigg|_0^y = \frac{1}{2} y^2 \]

Second do \[\int_0^1 \frac{1}{2} y^2 \, dy \]

Just a polar double integral
Spherical coordinates

Recall

\[x = \rho \sin \phi \cos \theta \]
\[y = \rho \sin \phi \sin \theta \]
\[z = \rho \cos \phi \]

\[\rho = \sqrt{x^2 + y^2 + z^2} \]
\[\iiint_E x e^{(x^2+y^2+z^2)^2} \, dV \]

where \(E \) is between

\[x^2 + y^2 + z^2 = 1 \]

and \(x^2 + y^2 + z^2 = 2 \)

in the first octant.
\[\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^1 \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \rho^2 \sin \phi \, d\theta \, d\phi \, d\rho \]