12.6

Trace: set any one of x, y, z to a constant and sketch the 2-D curve given by the resulting equation. (Z-traces are also called level curves)
eg. what is (and sketch)

\[23y^2 + z^2 = 100 + 4x^2 \]

\[-x^2 \quad 2 \quad 2 \quad 2 \]
\[\frac{a^2}{25} \quad \frac{y^2}{4} \quad \frac{z^2}{100} = 1 \]

\[-x^2 \quad 2 \quad 2 \quad 2 \]
\[\frac{a^2}{5^2} \quad \frac{y^2}{2^2} \quad \frac{z^2}{10^2} = 1 \]

"Waist" is in the y-z plane
\[\frac{y^2}{2^2} + \frac{z^2}{10^2} = 1 \]

do another
\[x = \text{trace} \]

so \[x = 5 \]

got \[\frac{y^2}{(5^2)^2} + \frac{z^2}{(10^2)^2} = 2 \]

\[\frac{y^2}{(5^2)^2} + \frac{z^2}{(10^2)^2} = 1 \]
\[\frac{x}{(1/3)^2} + (y-1)^2 = (z-1)^2 \]