12.1 #9

\[\text{Hint: triangle inequality.} \]

\[a \quad \text{b} \quad \text{c} \quad \text{longest} \leq \text{short}_1 + \text{short}_2 \]

Only way for longest = short$_1 +$ short$_2$

is if Δ is a line

\[a \quad \text{b} \quad \text{c} \]
|PA| = |PB|
Vectors

\[\langle 2, 1 \rangle \]

\[\langle 10, 0 \rangle \]
magnitude

magnitude is the length of the vector

\[|\langle x_1, y_1, z_1 \rangle| = \sqrt{x_1^2 + y_1^2 + z_1^2} \]
\[(a, b)\]
\[(-3, 2)\]
\[(-5, 1)\]
\[(a+2, b+1)\]
\[(2, 1)\]
\[(5, 4)\]
\[(3, 3)\]

\[\langle 2, 1 \rangle\]

Magnitude is \[\sqrt{4+1} = \sqrt{5}\]
\[\vec{a} + \vec{b} = \vec{c} \]

\[\langle a_1, a_2 \rangle + \langle b_1, b_2 \rangle = \langle a_1 + b_1, a_2 + b_2 \rangle. \]