$x^2 + y^2 = 9$

$y + z = 5 \rightarrow z = 5 - y$

$z = 1$

$\frac{\sqrt{9-x^2}}{5-y}$

$\int_1^{3} \int_{\sqrt{9-x^2}}^{\sqrt{9-x^2}} dz \, dy \, dx$
\[m = \iiint_{-3}^{3} \sqrt{x^2 + y^2} \, dz \, dy \, dx \]

\[M_{yz} = \iiint_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} x \sqrt{x^2 + y^2} \, dz \, dy \, dx \]
\[p = \sqrt{x^2 + y^2 + z^2} \]

So

\[
\int_0^\infty \int_0^{\pi/2} \int_0^{2\pi} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

\[
= 4 \int_0^{\pi/2} \sin \phi \, d\phi \int_0^{2\pi} \, d\theta
\]

\[0 \quad 0 \quad 0 \]

\[0 \quad 0 \quad 0 \]

\[
= 4 \pi \int_0^{\pi/2} \sin \phi \, d\phi
\]

\[0 \quad 0 \quad 0 \]
\[\int_{0}^{\pi} \left[2 \frac{1}{2} \sin \theta \cos \phi - \sin \phi \right] dp \, d\phi \, d\theta \]
\[\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \left(r^2 - r \cos \phi \right)^2 r \sin \phi \, dr \, d\phi \]

\[\rho = \sqrt{x^2 + y^2 + z^2} \]

\[\rho^2 = x^2 + y^2 + z^2 \]

\[z^2 = x^2 + y^2 \]