\[F = \frac{mgR^2}{(x+R)^2}, \quad F_{net} = ma = m \frac{dv}{dt} \]

\(x(t) \) is position (height) above earth, so \(\frac{dx}{dt} = v \)

Thus \(m \frac{dv}{dt} = -\frac{mgR^2}{(x+R)^2} \) (\(-\) since gravity acts downward)

\[\Rightarrow \quad \frac{dv}{dt} = \frac{-gR^2}{(x+R)^2} \]

We would like to "separate this, but have \(dt \) on the left, and \(x \), not \(t \), on the right. Need to switch one or the other. Note that we can think of velocity as a function of \(x \) (i.e., what is velocity at a certain height rather than time), i.e., as \(V(x(t)) \)

So by the chain rule,

\[\frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}, \quad \text{but} \quad \frac{dx}{dt} = v \]

Thus \(\frac{dv}{dt} = \frac{dv}{dx} \cdot v \)

So \(v \frac{dv}{dx} = \frac{-gR^2}{(x+R)^2} \) so now we can think of this as a separable diff. eq.
\[S_v dv = -gR^2 \int \frac{1}{(x+R)^2} \, dx \]

\[\frac{v^2}{a} = \frac{gR^2}{(x+R)} + C \]

but here \(v \) is a function of \(x \)

when \(t=0, \ x=0, \ \) so \(v(0) = v_0 \) (initial velocity)

and we get that

\[\frac{v_0^2}{a} = \frac{gR^2}{(0+R)} + C, \ \text{so} \ \frac{v_0^2}{a} = gR = C \]

so \(\frac{v^2}{a} = \frac{gR^2}{(x+R)} + \frac{v_0^2}{a} - gR \).

Now, at the top of the flight, \(x=h \) (given)

and \(v=0 \), so get

\[0 = \frac{gR^2}{h+R} + \frac{v_0^2}{a} - gR \]

\[gR - \frac{gR^2}{h+R} = \frac{v_0^2}{a} \]

\[\frac{gR (h+R) - gR^2}{h+R} = \frac{v_0^2}{a} \Rightarrow a \sqrt{\frac{2gR \cdot h}{h+R}} = v_0 \]
b. \[V_e = \lim_{h \to \infty} \sqrt{\frac{2gR}{h+R}} = \sqrt{2gR} \cdot \lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h+R}} \]

\[= \sqrt{2gR} \cdot 1 = \sqrt{2gR} \]

\[V_e = \sqrt{20.32 \cdot 3960 \text{ ft/mile}} \]

\[\text{Suppose} \quad \lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h+R}} = L \quad \text{this is} \quad \frac{\infty}{\infty} \quad \text{form} \]

so can use L'Hopital

\[L = \lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h+R}} = \lim_{h \to \infty} \frac{\frac{1}{2} h^{-\frac{1}{2}}}{\frac{1}{2} (h+R)^{-\frac{1}{2}}} = \]

\[= \lim_{h \to \infty} \frac{\sqrt{h}^{\frac{1}{2}}}{\sqrt{h+R}^{\frac{1}{2}}} = \lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h+R}} = L \]

\[\implies L = \frac{1}{L} \implies L^2 = 1 \implies L = \pm 1 \]

but \[\frac{\sqrt{h}}{\sqrt{h+R}} \] is always non-negative, so \[L = +1 \]

\[\lim_{h \to \infty} \frac{\sqrt{h}}{\sqrt{h+R}} = 1 \]