A function \(f(x) \) is one-to-one if \(f(x_1) = f(x_2) \implies x_1 = x_2 \). This is equivalent to \(f(x) \) passing the horizontal line test.

One to one functions have inverses. So if \(f \) is one-to-one with domain \(A \) and range \(B \), then it has an inverse \(f^{-1} \) with domain \(B \) and range \(A \) so that

\[
 f(a) = b \iff f^{-1}(b) = a \\
\text{i.e. } f(f^{-1}(x)) = x = f^{-1}(f(x))
\]

Steps for finding \(f^{-1}(x) \) given \(f(x) \):

1. \(y = f(x) \)
2. Switch \(x \) and \(y \)
3. Solve for \(y \)
4. The answer is \(f^{-1}(x) \)

Recall: the inverse \(a^x \) is \(\log_a x \). So \(\log_a x = y \iff a^y = x \) and \(a^x = x = \log_a x \)

\[
\text{if } \frac{\ln x}{\ln a} = \frac{\ln a^x}{\ln a} \iff \ln a^x = \ln x
\]

\[
\ln a^x = \ln x \\
\ln \left(\frac{a^x}{x} \right) = \ln \frac{a^x}{x} \\
\ln a^x - \ln x = \ln \frac{a^x}{x} \\
\ln a^x = \ln \left(\frac{a^x}{x} \right)
\]