1st Derivative Test:
Let \(f(x) \) be a continuous function on \(\mathbb{R} \) and let \(c \) be a critical number (i.e. \(f'(c) \) DNE or \(f'(c) = 0 \)).

Then:
- If \(f''(c) < 0 \), then \(f(c) \) is a relative maximum.
- If \(f''(c) > 0 \), then \(f(c) \) is a relative minimum.

\[f''(x) \text{ tells the concavity.} \]
\[f''(x) > 0 \text{ on } I \Rightarrow f(x) \text{ is concave up} \]
\[f''(x) < 0 \text{ on } I \Rightarrow f(x) \text{ is concave down} \]
Then: if \(f'(c) = 0 \) and \(f''(c) > 0 \), then \(f(c) \) is rel min.
and \(f''(c) < 0 \) then \(f(c) \) is rel max.

If: \(f(x) = \cos^2 x - 2 \sin x \quad 0 \leq x \leq 2\pi \)
\[f'(x) = -2 \cos x \sin x - 2 \cos x \]
\[= -\sin 2x - 2 \cos x \]
\[f''(x) = -2 \sin 2x + 2 \sin x \]

Now set \(f'(x) = 0 \) to find crit. \#s
\[-2 \cos x \sin x - 2 \cos x = 0\]
\[\Rightarrow -2 \cos x (\sin x + 1) = 0\]
so \(\cos x = 0 \quad x = \pi/2, 3\pi/2 \)
or \(\sin x = -1 \quad x = 3\pi/2 \).