\[A = 1000 \text{ cm}^2 \]

\[A = \pi r^2 \]

\[\frac{1000}{\pi} = r \]

Example:

\[\lim_{x \to -1} f(x) = L \]

Recall:

\[\lim_{x \to a} f(x) = L \]

\[f(a) = 2x - 2 \]

\[L = -4 \]

\[a = -1 \]

\[\forall \varepsilon > 0 \exists \delta > 0 \text{ s.t.} \]

\[0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon \]

Problem:

\[f(x) = \pi x^2 \]

\[\lim_{x \to \frac{1000}{\pi}} x = 1000 \]

\[a = \frac{1000}{\pi} \]

Looking at an \[\varepsilon \text{ of } 5 \text{ cm} \]

We are asking what \(S \) we need

so that \[0 < |x - \frac{1000}{\pi}| < \delta \]

means that \[|f(x) - 1000| < 5 \]

From graph, we found \(S \) needs to be

less than \(.0445 \)

We want \(S \) such that

\[\left| f(\omega) - L \right| < \varepsilon \]

\[\left| 2\omega - 4 \right| < \varepsilon \]

\[\left| 2\omega + 2 \right| < \varepsilon \]

\[\left| 2|\omega| + 1 \right| < \varepsilon \]

\[\left| |\omega| - \frac{1}{2} \right| < \varepsilon \text{ (take } \delta = \frac{\varepsilon}{2} \text{)} \]

So given \(\varepsilon \), let \(\delta = \varepsilon/2 \)

Hence \(\varepsilon \text{, let } \delta = \varepsilon/2 \)

\[\Rightarrow |\omega + 1| < \varepsilon/2 \]

\[\Rightarrow 2|\omega| + 1 < \varepsilon \]

\[\Rightarrow |2\omega + 2| < \varepsilon \]

\[\Rightarrow |2\omega - 4| < \varepsilon \text{ as needed.} \]