Calc 11-19-08.notebook

November 19, 2008

\[y' = 15x + c = 0 \text{ has no real roots in } [2, 3] \]

If there were two roots, say \(x = a \) and \(x = b \), then \(f(a) = 0 \), \(f(b) = 0 \).

So the MVT says there exists \(c \) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{0 - 0}{b - a} = 0 \]

So there are two roots between 2 and 3.

\[2^2 \]

For \(1 \leq x \leq 4 \), there exists \(c \) in \((1, 4)\) such that

\[f'(c) = \frac{f(4) - f(1)}{4 - 1} = 2 \]

So \(f(1) - 10 \geq 2 \)

\[f(4) = 16 \]

So one of the roots is 16.

\[\frac{4}{2} \]

Def:

\(f(x) \) is increasing on an interval \(I \) if for all \(a < b \) in \(I \), \(f(a) \leq f(b) \).

\(f(x) \) is decreasing on an interval \(I \) if for all \(a < b \) in \(I \), \(f(b) \leq f(a) \).

Then:

\[f'(x) > 0 \text{ on } I \Rightarrow f(x) \text{ is increasing} \]

\[f'(x) < 0 \text{ on } I \Rightarrow f(x) \text{ is decreasing} \]

Proof: Suppose \(f(x) > 0 \) and \(a < b \) in \(I \).

Then MVT says there exists \(c \) in \((a, b)\) so

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

\[f'(c) > 0, \quad \text{so} \quad f(b) > f(a) \]

First derivative test:

If \(c \) is a critical number of \(f(x) \),

\[f'(c) \text{ DNE or } = 0. \]

Then

\[f(x) \text{ inc.} \quad \text{at} \quad c \text{ inc.} \quad \Rightarrow f(c) \text{ is a local max}. \]

\[f(x) \text{ dec.} \quad \text{at} \quad c \text{ dec.} \quad \Rightarrow f(c) \text{ is a local min.} \]

Second derivative:

\[f''(x) > 0 \Rightarrow f(x) \text{ is concave up} \]

\[f''(x) < 0 \Rightarrow f(x) \text{ is concave down} \]
Second derivative test:

If \(f''(c) = 0 \) and

\[
\begin{align*}
 f''(c) &< 0, \quad \text{then } f(c) \text{ is a local max} \\
 f''(c) &> 0, \quad \text{then } f(c) \text{ is a local min}
\end{align*}
\]

C is an inflection point if

\[f'' < 0 \text{ for } x < c \quad \text{and} \quad f'' > 0 \text{ for } x > c \]

\[f'(x) = 12x^2 + 4x - 6 \]

Set to zero and solve:

\[12x^2 + 4x - 6 = 0 \]

\[2x^2 + x - 1 = 0 \]

Use the quadratic formula to find the roots:

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Use these to test the intervals for concavity.