\[f(x) = x^{4/3}(x-4)^2 \]

\[f'(x) = \frac{4}{3}x^{-1/3}(x-4)^2 + x^{4/3} \cdot 2(x-4) \]
\[= x^{-1/3}(x-4) \left(\frac{4}{3}(x-4) + x \cdot 2 \right) \]
\[= x^{-1/3}(x-4) \left(\frac{4}{3}x - \frac{16}{3} + 2x \right) \]
\[= x^{2/3}(x-4) \left(\frac{14}{3}x - \frac{16}{3} \right) \]
\[= \frac{2x}{3}x^{-1/3}(x-4) \left(7x - 8 \right) \]

Critical points: \(x = 0 \) (\(f'(0) \) undefined)
\(x = 4 \) \(f'(4) = 0 \)
\(x = \frac{8}{7} \) \(f'(8/7) = 0 \)
4.2 Rolle's Theorem

If
1. \(f(x) \) is continuous on \([a, b]\)
2. \(f'(x) \) exists on \((a, b)\)
3. \(f(a) = f(b) \)

Then \(\exists \) \(c \in (a, b) \) s.t.

\[f'(c) = 0 \]
Proof:

if \(f(x) = k, \text{ constant} \)

\[\forall x \in [a, b] \]

then \(f'(x) = 0 \quad \forall x \in (a, b) \)

so any \(c \in (a, b) \) "works"

i.e. \(f'(c) = 0 \quad \forall c \in (a, b) \).
otherwise \(f \) has either a local max or a local min in \((a, b)\), say at \(c \).

By Fermat's theorem,

\[
f'(c) = 0, \quad \text{since } f(x) \text{ exists on } (a, b) \text{ (given)}.
\]
Mean Value Theorem

If 1. \(f(x) \) is continuous on \([a, b]\)

2. \(f'(x) \) exists on \((a, b)\)

Then

\[\exists \ c \in (a, b) \text{ such that} \]

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]
slope is $f'(c)$

slope is $\frac{f(b) - f(a)}{b - a}$