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A graph is a set of vertices (dots) with 
edges (lines) connecting them.
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What are self-assembled DNA 
nanostructues?

A self-assembled DNA cube and Octahedron

http://seemanlab4.chem.nyu.edu/nanotech.html 22 nanometers



The molecular building blocks

K-armed branched junction molecules

D. Luo, “The road from biology to materials,” Materials Today, 6 (2003), 38-43



Why self-assembling nanostructures?

• Biomolecular computing (Hamilton Cycle/3-Sat)
• Nanoelectronics
• Fine screen filters (lattices) at the nano-size scale
• Biosensors and drug delivery mechanisms

http://www.nanopicoftheday.org/2004Pics/April2004/DNAmesh.htm



L. M. Adleman, Molecular Computation of 
Solutions to Combinatorial Problems.  Science, 
266 (5187) Nov. 11 (1994) 1021-1024.

1. Encode a question in a biological structure

2. Apply a biological process to the structure

3. Be able to isolate a solution to the question from the result 
of the applied process

Biomolecular computing



Problems Problems 
motivated by motivated by 
applications in applications in 
biologybiology

Existing Existing 
mathematical mathematical 
theory and toolstheory and tools

New mathematical New mathematical 
theory and toolstheory and tools

The application´theory cycle



1. Explain the biological problem to the mathematician  (problem 
formulation). 

2. Develop the necessary and sufficient formalism to model the 
problem.

3. Apply/develop mathematical theory and tools. 

4. Communicate the mathematics to the biologist in a way that actually 
informs the problem.

Communication is key…



The fundamental questions

Given a target graph,
1. what is the minimum number of k-armed 

branched junction molecules that must be 
designed to create the graph?

2. What is the minimum number of bond types 
needed?

3. What is the combinatorial structure of the 
molecules in a minimal set?



Three different laboratory constraints

1. The incidental construction of a graph smaller than G is 
acceptable

2. The incidental construction of a graph smaller than G is not 
acceptable but a graph with the same size as G (same 
number of edges and vertices) is acceptable

3. Any graph incidntally constructed must be larger than G.

In all cases, we assume flexible armed molecules
(abstract, not embedded, graphs).



Definitions

Sticky end types a, b, c, ĉ, â, etc. label unpaired arms sticking off of 
molecules.

Types a and â, are complementary sticky ends.
A bond-edge is an edge formed by joining two complementary sticky ends.
A tile represents a branched junction molecule with a specific set of sticky 

ends.
A pot P is a set of tiles such that for any sticky end type a on a tile in P, 

there is a sticky end of type â on some tile in P
A complex is an arrangement of tiles from a pot type P with as many 

adjoined complementary sticky ends as possible with the given tiles
A complete complex is a complex which has no unadjoined sticky ends
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Example

Both complete complexes and incomplete complexes can be constructed from the 
this pot P with 4 tiles:
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Simple constraints

1. A graph G may be constructed as a complete complex 
from pot P if and only if the number of hatted sticky 
ends of each type used in the construction of G equals 
the number of unhatted sticky ends of the same type that 
appear in the construction. 

2. The total number of hatted sticky end types must equal 
the total number of  unhatted sticky end types in a 
complete complex. 

These constraints drive parity arguments.



You try one….
How many tiles to get it, but nothing smaller?

C5 C6
K4



Some things to consider

Since every edge in a graph G represents the connection of two complementary 
sticky ends, a complete complex will be required to construct G.

Since a tile can not represent two vertices of different degree can represent the 
same tile type, at least the number of different vertex degrees in G are needed.

Under the restrictions of scenario 3, no two adjacent vertices can represent the 
same tile type because multi-edges and loops could be formed by swapping sticky 
ends.
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Scenario 1 example

The vertex sequence of a graph G is the list of vertex degrees in G.
For Eulerian graphs the minimum number of tile types is just the number of 

different digits that appear in the vertex sequence.  This can be shown by 
labeling sticky end types as we follow a graphs Euler circuit (labeling sticky 
end type a for outgoing sticky ends and â for incoming sticky ends). 
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Only 1 bond-edge type 
is required for 
Eulerian graphs, and 
only as many tile 
types as valencies!



Scenario 2 example

The minimum number of tile types required to construct a cycle such 
that no smaller graphs can be constructed out of the tiles is   where n is 
the number of vertices in the cycle Cn.

n Oddn Even

.  .  .

.  .  .

.  .  .

.  .  .

The bisecting line reflects identical tile types

The minimum number of bond-edge types in this case is        .

1
2
n⎡ ⎤ +⎢ ⎥⎢ ⎥

2
n⎡ ⎤
⎢ ⎥⎢ ⎥



Scenario 3 example

Complete graphs Kn can only be constructed using n tile types and n-1 bond-edge 
types.  Since every vertex in a complete graph is adjacent to every other vertex, no 
two vertices can represent the same tile type under the constraints of scenario 3.  
The image below shows the result of two tiles (a and b) of the same type appearing 
in Kn.
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A complex other than Kn is formed!



Proof techniques

Get upper bounds by finding a set of tiles that suffice to build the graph.
Lower bounds/unwanted graphs are hard.  A combination of number 

theory and linear algebra, on equations determined by equivalence of 
hatted and unhatted sticky ends of a given type in complete complex.

E.g. tiles                                              

suffice for Kn for n even, in Scenario 2. To show that no smaller graph 
on m vertices results from x tiles of type 1 and y tiles of type 2, we 
show this has a unique solution:  

However, x and y must be integers, so this is a contradiction. 
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T3(Kn,m) = min(n,m)+1.Kn,m

T3(Kn) = n.Kn

T3(Cn)=               .Cn

T3(T) = the number of induced subtree isomorphisms.Trees

= minimum number of tile types required if complexes of the same size as (or 
smaller than) the target graph are not allowed.

Scenario 3

2  ≤ T2(Kn,n) ≤ 3.Kn,n 

T2(Kn,m) = 2 if gcd(m,n)=1, and T2(Kn,m) = 3 if gcd(m,n)>1.Kn,m with n ≠ m

T2(Kn) = 2 if n is even, and T2(Kn) = 3 if n is odd.Kn

.Cn

T2(T) = the number of different lesser size subtree sequences.Trees

= minimum number of tile types required if complexes of the same size as the 
target graph, but not smaller, are allowed.

Scenario 2

T1(G) = 1 if n is even, and T1(G) = 2 if n is odd.
K-regular 

graphs

T1(Kn,m) = 1 if n=m and even, and T1(Kn,m) = 2 otherwise.Kn,m

T1(Kn) = 1 if n is even, and T1(Kn) = 2 if n is odd.Kn

T1(Cn) = 1.Cn

The number of different vertex degrees ≤ T1(G) ≤ the number of different vertex 
degrees + 1.Trees

The number of different vertex degrees ≤ T1(G) ≤ the number of different even vertex 
degrees + 2*(the number of different odd vertex degrees).  

General graph 
G

= minimum number of tile types required if complexes of smaller size than the 
target graph are allowed.

Scenario 1

Table A:  Minimum Tile Types

( )2T G

2 1n +⎡ ⎤⎢ ⎥

( )3T G

2 1n +⎡ ⎤⎢ ⎥

T2(Cn) = 

( )1T G



B3(Kn)  =  n – 1.Kn

.Cn

= Minimum number of bond edge types required if complexes of the same size 
as (or smaller than) the target graph are not allowed.

Scenario 3

B2(Kn,m) = 1 if gcd(m,n)=1 , and B2(Kn,m) = 2 if gcd(m,n)>1.Kn,m

B2(Kn) = 1 if n is even, and B2(Kn) = 2 if n is odd.Kn

.Cn

B2(T) = the number of different sizes of lesser size subtrees.Trees

= minimum number of bond edge types required if complexes of the same size 
as the target graph, but not smaller, are allowed.

Scenario 2

= 1 for all graphs.
General graph 

G

= minimum number of bond-edge types required if complexes of smaller size than 
the target graph are allowed.

Scenario 1

Table B:  Minimum Bond-Edge Types
( )1B G

( )1B G

( )2B G

2n⎡ ⎤⎢ ⎥

( )3B G

2n⎡ ⎤⎢ ⎥

B2(Cn) = 

B3(Cn) =  

Thus far, the same pots have achieved both minimum tile types and 
minimum bond-edge types, but we don’t know if this is always possible.



Pending…

Various lattices, both 2 and 3 dimensional 
(as incomplete complexes?)
Tubes (Cm x Pn) (ditto)
Cm x Cn

Various Platonic and Archimedean solids



And a whole other kettle of fish…

Same set up and questions, but now assume 
rigid armed molecules—i.e. a fixed rotation 
(or location) of the sticky end types about a 
tile vertex.
Edge-length constraints—because the 
helixes have to twist, if we call a twist a unit, 
each edge is of integer length.
Rigid edges.



A different assembly method

‘zipping together’
single strands of 

DNA

(not allowed) N. Jonoska, N. 
Saito, ’02 



A characterization

A theorem of C. Thomassen specifies precisely when a 
graph may be constructed from a single strand of DNA, 
and theorems of Hongbing and Zhu to characterize graphs 
that require at least m strands of DNA in their construction.

Theorem:  A graph G may be constructed from a single 
strand of DNA if and only if G is connected, has no vertex 
of degree 1, and has a spanning tree T such that every 
connected component of  G – E(T) has an even number of 
edges or a vertex v with degree greater than 3.



Oriented Walk Double Covering and Bidirectional Double Tracing
Fan Hongbing, Xuding Zhu, 1998

“The authors of this paper came across the problem of bidirectional 
double tracing by considering the so called “garbage collecting”
problem, where a garbage collecting truck needs to traverse each side 
of every street exactly once, making as few U-turns (retractions) as 
possible.”

You never know….
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