A number \(L \) is called a common multiple of \(m \) and \(n \) if both \(m \) and \(n \) divide \(L \). The smallest such \(L \) is called the least common multiple of \(m \) and \(n \) and is denoted by \(\text{lcm}(m, n) \). For example \(\text{lcm}(3, 7) = 21 \), \(\text{lcm}(12, 16) = 48 \).

a. Find the following least common multiples.

We computed them on maple.

(i) \(\text{lcm}(8, 12) = 24 \)
(ii) \(\text{lcm}(20, 30) = 60 \)
(iii) \(\text{lcm}(5, 108) = 204 \)
(iv) \(\text{lcm}(23, 18) = 414 \)

b. For each of the \(\text{lcm} \)'s that you computed in a, compare the value of \(\text{lcm}(m, n) \) to the values of \(m, n \) and the \(\text{gcd} \) of \((m, n) \). Try to find a relationship.

(i) \(\text{lcm} = 24 \)
 \[\begin{align*}
 m &= 8 \\
 n &= 12 \\
 \text{gcd} \text{ of } (8, 12) &= 4
 \end{align*} \]

(ii) \(\text{lcm} = 60 \)
 \[\begin{align*}
 m &= 20 \\
 n &= 30 \\
 \text{gcd} \text{ of } (20, 30) &= 10
 \end{align*} \]

(iii) \(\text{lcm} = 204 \)
 \[\begin{align*}
 m &= 51 \\
 n &= 68 \\
 \text{gcd} \text{ of } (51, 68) &= 17
 \end{align*} \]

(iv) \(\text{lcm} = 414 \)
 \[\begin{align*}
 m &= 23 \\
 n &= 18 \\
 \text{gcd} \text{ of } (23, 18) &= 1
 \end{align*} \]

From these observations we discovered that the \(\text{gcd} \)'s from i, ii are both even, and that the \(\text{lcm} \)'s of both are \(\text{lcm} = (3m, 2n) \).
To show our observation we see that for i: LCM = 3.8 or 3.12 both equal 24

For iii and iv we noted the gcd for both were odd
\[\text{gcd}(11, 7) = 1, \text{gcd}(23, 12) = 1 \]
and that iv had a LCM = 4m or 3n.
Finally iv had an LCM of \(4 \times 14 = 23.18 \)

2. Prove the relationship for m and n.

\[\frac{m}{k} = \frac{n}{l} \]
\[\text{LCM} = \frac{m \cdot n}{\text{GCD}} \]

We know \(k \cdot l \) is a common multiple of \(m \) and \(n \), claim is the least common multiple.

Let's take \(P \) as another common multiple
\[P = a \cdot m = b \cdot n \]
so \(a \cdot k \cdot l = b \cdot k \cdot s \)

So if \(P \) then \(L \leq P \) and therefore \(L \) is the least common multiple.

So we have \(L = k \cdot s \), so \(k \cdot s \) could be the least common multiple.

Since \(L \) divides \(P \) we have \(L \) being the least common multiple.
c cont. So since $P = \alpha \cdot m = b \cdot n$

$$P = akl = bks$$

$$\Rightarrow a \ell = bs$$

since $gcd(l, s) = 1$ so $\ell/bs \Rightarrow \ell/b$

so $b = c\ell$ for some c.

Thus $P = clks$ and $L = lks$ so ℓ/P

and so $L \leq P \sqrt{ }$
d. Using maple we found the GCD = 541 and the formula we use is

\[\text{LCM} \left(\frac{m}{\text{GCD}}, \frac{n}{\text{GCD}} \right) \]

so \[\text{LCM}(301337, \frac{307829}{541}) \]

\[\to \text{LCM}(301337, 307829 \cdot \frac{301337}{307829}) \]

\[= 171440753 \]

C. We know that \(M \) and \(N \) must be multiples of 18. \(M \) must be equal to 18, because any other multiple can result in a different GCD.

So \(\text{GCD}(34, 22) = 34 \)
Taking \(M \) to be 18, \(n \) must be equal to 720. If \(n \) is any other multiple of 18, that larger number would be the LCM of the two numbers because it is a multiple of 18. Therefore \(m = 18 \) and \(n = 720 \).

Extension: Let's take the gcd of the numbers in d and see if there's a relationship between numbers -- maybe both odd or even?

\[\text{gcd}(301337, 307829) = 541 \]

\[\to \text{found on maple and known from above} \]

We see that both \(M \) and \(n \) odd gave an odd. Also that both the LCM and GCD are odd.
Theresa Ryan
Dan Caffrey
Kelsey Stavseth
Carrie Leonard
Exercise 5.4

part a

> restart;

> ilcm(8, 12);

> ilcm(20, 30);

> ilcm(51, 68);

> ilcm(23, 18);

> part b

> igcd(8, 12);

> igcd(20, 30);

> igcd(51, 68);

> igcd(23, 18);

> part d

> igcd(301337, 307829);

> ilcm(301337, 307829);