Claim:

Any integer n can be factored into a product of primes, possibly trivial, i.e. n is itself prime.

Proof: by induction on n.

Base case: Show true when $n=1$.

- $N=1$: yes - is prime
- $N=2$: yes - is prime
- $N=3$: yes - is prime
- $N=4$: yes - 2, 2 product of primes
- $N=5$: yes
- $N=6$: yes - 2, 3
So the hypothesis is true if \(n \) with
\[\forall \, n \leq 6. \]

So now assume true
\[\forall \, n \leq N - 1 \]

\[\text{ie } n \text{ can be written as a product of primes} \]
and look at \(N \).

if \(N \) is prime, we're done.

otherwise \(N = ab \) for integers \(1 < a, b \) (hence \(a, b \leq N-1 \))

by induction hypothesis

\(a \) and \(b \) are both products of primes

Thus \(N \) is a product of primes.
Side note: two "flavors" of induction

Both start with a base case

Flavor 1

assume true for \(N - 1 \)

* show true for \(N \)

Flavor 2

assume true for all \(n \leq N - 1 \)

and show true for \(n = N \)
Claim:

If \(n = p_1 \cdots p_r \) is a factorization of \(n \) into primes, then any other factorization is just a reordering.
Proof:
suppose \(n = g_1 \cdot g_2 \cdots \cdot g_s \)

for primes \(g_i \).

Then
\[
T_{g_2} \cdots T_{g_s} = g_1 \cdot \cdots \cdot g_s
\]

so since \(p_i \mid \) left-hand side

Then \(p_i \mid g_1 \cdot \cdots \cdot g_s \)

\[\therefore p_i \mid g_i \text{ for some } i\]

but the \(g_i \)'s are prime, \(\therefore p_i = g_i \text{ for some } i \).

So reorder the \(g_i \)'s to make it the first one.
Thus

\[\Phi_1 \Phi_2 \Phi_3 \ldots \Phi_r = \Phi_{\Phi_2 \Phi_3 \ldots \Phi_r} \]

so \[\Phi_2 \ldots \Phi_r = \Phi_{\Phi_2 \Phi_3 \ldots \Phi_r} \]

\[p_2 \mid \Phi_2 \ldots \Phi_r \]

so \[p_2 \mid \Phi_{\Phi_2 \Phi_3 \ldots \Phi_r} \]

\[p_2 \mid \Phi_{\Phi_2 \Phi_3 \ldots \Phi_r} \] for some

Assume the first
Thus

\[p_2 \ p_3 \ \cdots \ p_r = p_2 \ q_3 \ \cdots \ q_s \]

\[p_3 \ \cdots \ p_r = q_3 \ \cdots \ q_s \]

\text{etc.}

Thus \[p_1 \ \cdots \ p_r = q_1 \ \cdots \ q_s \]

\((r \text{ must }= s)\) \(\text{ up to reordering.}\)
This means that any

\[N = \prod_i \alpha_i \]

Right now -

Suppose \(M = \prod_i \beta_i \), \(N = \prod_i \alpha_i \)

What is \(\gcd(M, N) \), \(\text{lcm}(M, N) \)