Def: if \(\sigma \in S_n \) can be written as an even (odd) number of transpositions, then we say \(\sigma \) is an even (odd) transposition.
Def: A_n is the set of all even permutations. This (in homework), A_n is a subgroup, called the Alternating group.
Note

\[
\text{odd \cdot odd = even} \\
\text{odd \cdot even = odd} \\
\text{even \cdot even = even}.
\]

\[
|S_n| = n!
\]
Theorem \(|A_n| = \frac{n!}{2}\) for \(n > 2\)

Proof: since \(n > 2\), \((12) \in S_n\) if \(\sigma \in S_n\) is odd

Then \((12)\sigma\) is even

\[
\therefore \text{ # even } \geq \text{ # odds}
\]
if \(\sigma \in S_n \) is even, then

\((12) \) \(\sigma \) is odd, \ldots

\[\# \text{ odds} \geq \# \text{ evens}, \]

hence \(\# \text{ odds} = \# \text{ evens} \),

so \(|S_n| = \# \text{ odds} + \# \text{ evens} \)

\[\Rightarrow \ n^! = 2 \cdot \# \text{ evens} \]

\[\Rightarrow \ \frac{n^!}{2} = \# \text{ evens} = |A_n| \]
Theorem (not in book)

An m-cycle is an odd permutation if the number m is even.

\((1\ 2) \) is an odd permutation (even length, \(m = 2 \))

while \((1\ 2\ 3) = (1\ 3)(1\ 2)\) is an even permutation (odd length, \(m = 3 \))
Proof:

Recall

\[(a_1, \ldots, a_m) = (a, m) (a_1, m-1) \cdots (a, a_2)\]

\[\text{length } m\]

\[m \text{ and } m-1 \text{ have opposite parity}\]
Application: check digit scheme

To a_1, \ldots, a_{n-1} add an

5th

$s(a_1) + s(a_2) + \cdots + s(a_n) = 0$

where $s = (01589427)$

and $* $ is in D_5
Find the check digit for

\(\sigma = (01589427)(36) \)

\(\sigma(2) = 7 \quad \sigma^2(3) = 3 \quad \sigma^3(4) = 0, \quad \sigma^4(1) = 4 \)

Now we need \(x \) so that \(\sigma^5(x) = b \)

So that \(7 \times 3 \times 0 \times 4 \times b = 0 \) in \(D_5 \)

\[9 \times 4 \times b = 0 \]
\[5 \times b = 0 \]

So \(b = 5 \)

So now we need \(x \) so that \(\sigma^5(x) = 5 \)

So \(x = 4 \). Thus the check digit is 4.
Chapter 6

\[\mathbb{Z}_5 + \{0, 1, 2, 3, 4\} \]

and \(\langle a \rangle = \{ a^0, a^1, a^2, a^3, a^4 \} \)

if \(|a| = 5\)

\[1 + 3 \iff a^1 \cdot a^3 \]

\[4 \iff a^4 \]
Operation preserving same group table structure
Def. h

Isomorphism

A map $\Theta : G \rightarrow H$ where (G, \ast) and $(H, \#)$ are groups is an isomorphism if Θ is 1-1 and onto and

AND

\[\Theta(a \ast b) = \Theta(a) \# \Theta(b) \]

\[\forall a, b \in G \]

\[\forall \in H \]
If there is such a map,

Then we say \(G \) and \(H \) are isomorphic and write

\[G \cong H \text{, or } G \simeq H \]